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Given a root system Φ of rank r and a global field F containing the n-th roots of
unity, it is possible to define a Weyl group multiple Dirichlet series whose coefficients
are n-th order Gauss sums. It is a function of r complex variables, and it has
meromorphic continuation to all of Cr, with functional equations forming a group
isomorphic to the Weyl group of Φ. Weyl group multiple Dirichlet series and their
residues unify many examples that have been studied previously in a case-by-case
basis, often with applications to analytic number theory. (Examples may be found in
the final section of the paper.)

We believe these Weyl group multiple Dirichlet series are fundamental objects.
The goal of this paper is to define these series for any such Φ and F , and to indicate
how to study them. We will note the following points.

• The coefficients of the Weyl group multiple Dirichlet series are multiplicative,
but the multiplicativity is twisted , so the Dirichlet series is not an Euler prod-
uct.

• Due to the multiplicativity, description of the coefficients reduces to the case
where the parameters are powers of a single prime p. There are only finitely
many such coefficients (for given p).

• In the “stable case” where n is sufficiently large (depending on Φ), the number
of nonzero coefficients in the p-part is equal to the order of the Weyl group.
Indeed, these nonzero coefficients are parametrized in a natural way by the
Weyl group elements.

• The p-part coefficient parametrized by a Weyl group element w is a product of
l(w) Gauss sums, where l is the length function on the Weyl group.
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We note a curious similarity between this description and the coefficients of the
generalized theta series on the n-fold cover of GL(n) and GL(n − 1); these coeffi-
cients are determined in Kazhdan and Patterson [17] and discussed further in Patter-
son [21]. See Bump and Hoffstein [11] or Hoffstein [15] for a “classical” description
of these coefficients. The noted similarity means that the complete Mellin trans-
form of the theta function would be a multiple Dirichlet series resembling our An+1

multiple Dirichlet series. There is no a priori reason that we are aware of for the
complete Mellin transform of the generalized theta series to have meromorphic con-
tinuation. For example if n = 4, the complete Mellin transform of an GL(4) cusp
form (nonmetaplectic) would have a meromorphic continuation only in the special
cases s1 = s2 + s3 or s3 = s1 + s2, in which case it produces a product of L-functions
by Bump and Friedberg [9]. (If s1, s2 and s3 are in general position, meromorphic
continuation fails due to the Estermann phenomenon.) This observation raises quite
a few potentially interesting questions.

The Weyl group multiple Dirichlet series are expected to be Whittaker coefficients
of metaplectic Eisenstein series, though we will not prove that here; we will, however,
come back to it in a later paper. The claim that the Whittaker coefficients of
metaplectic Eisenstein series have such a simple structure appears to be new, and is
essentially global in nature, because the representations of the metaplectic covers of
semisimple groups do not in general have unique Whittaker models. In this paper we
will study the Weyl group multiple Dirichlet series without making use of Eisenstein
series on higher-rank metaplectic groups. However Eisenstein series on the n-fold
cover of SL2 underlie the functional equations of the Kubota Dirichlet series that
are the basic building blocks in our construction. Our methods are those laid out in
Bump, Friedberg and Hoffstein [10], applying a theorem of Bochner [1] from several
complex variables to reduce everything directly to the case of Kubota’s Dirichlet
series. (The use of Bochner’s theorem would also be implicit in an approach based
on higher-rank Eisenstein series, in the reduction of the functional equations to rank
one; this type of argument goes back to Selberg [22]. But an approach based on
the theory of higher rank metaplectic Eisenstein series would be considerably more
difficult.)

We will begin our treatment with a heuristic formulation, in which important
aspects of the true situation are ignored to obtain some intuition. We will thus
gain heuristics that predict the (twisted) multiplicativity of the coefficients and the
group of automorphisms of Cr comprising the group of functional equations; it is
isomorphic to the Weyl group of Φ. Although we will not discuss it much in this
paper, the heuristic viewpoint is also useful for inferring facts about residues of Weyl
group multiple Dirichlet series.
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Although the heuristic point of view is unrigorous, we will proceed to a completely
rigorous formulation. Our discussion will thus have three stages. The first stage is
the heuristic formulation. In the second stage, we will completely describe the p-
part of the “stable” Weyl group multiple Dirichlet series; this is accomplished in
Section 2. The third stage, completing the theory, requires careful bookkeeping with
Hilbert symbols. Stages 1 and 2 are carried out completely here; for the third stage,
we carry it out here for the A2 Weyl group multiple Dirichlet series, and for general
Φ in [5].

This work was supported by NSF FRG Grants DMS-0354662, DMS-0353964 and
DMS-0354534.

1 “Heuristic” Multiple Dirichlet Series

The paper of Brubaker and Bump [4] will be our general reference for most foun-
dational matters; particularly, the properties of Gauss sums, Hilbert symbols and
power residue symbols that we need are there. For root systems, see Bourbaki [2] or
Bump [8].

A root system is a finite subset Φ of Euclidean space Rr of nonzero vectors such
that if α ∈ Φ, and if σα : Rr −→ Rr is the reflection in the hyperplane through the
origin perpendicular to the vector α then σα(Φ) = Φ, and if α, β ∈ Φ, then β−σα(β)
is an integer multiple of α. Since −α = σα(α), these axioms imply that −α ∈ Φ.
The root system is called reduced if α and 2α are not both in Φ, and it is called
irreducible if it is not the union of two smaller root systems that span orthogonal
subspaces of Rr. The root system Φ is called simply-laced if all roots have the same
length.

We choose a partition of Φ into subsets Φ+ and Φ− of positive and negative roots
such that for some hyperplane H through the origin, the roots in Φ+ all lie on one
side of H, and the roots in Φ− lie on the other side. A positive root α ∈ Φ+ is called
simple if it cannot be written as a sum of other positive roots.

Let Φ be a reduced root system in Rr, and let ∆ denote the set of simple positive
roots. The Weyl group W of Φ is the group generated by the σα such that α ∈ Φ.
It is also generated by the σα with α ∈ ∆. Let

∆ = {α1, · · · , αr}

be the set of simple positive roots, and denote σi = σαi
. Then W has a presentation

consisting of the relations

σ2
i = 1, (σiσj)

2r(αi,αj) = 1,
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where, if θ is the angle between the roots,

r(α, β) =


0 if α, β are orthogonal,
1 if θ = 2π

3
,

2 if θ = 3π
4
,

3 if θ = 5π
6
.

(1)

Thus W is a Coxeter group.
Fix n > 1, and let F be an algebraic number field containing the group µn of n-th

roots of unity in C. We will also assume that −1 is an n-th power. It follows that
F is totally complex. Let S be a finite set of places including all the infinite ones,
those dividing n, all those that are ramified over Q and enough others that the ring
oS of S-integers is a principal ideal domain. We recall that oS is the set of elements
α ∈ F such that |αv|v 6 1 for all places v of F not in S. We will denote

F∞ =
∏

v∈S∞

Fv, Ffin =
∏

v∈Sfin

Fv, FS =
∏
v∈S

Fv = F∞ × Ffin,

where S∞ is the set of archimedean places in S, and Sfin is the set of nonarchimedean
ones. We embed oS in FS along the diagonal. It is discrete and cocompact.

If v is a place of F , the Hilbert symbol is a map F×
v × F×

v −→ µn, denoted

c, d 7−→ (c, d)v, c, d ∈ F×
v .

We will also denote
(c, d) =

∏
v∈S

(cv, dv)v.

The symbol ( , ) is a skew-symmetric bilinear pairing on F×
S whose properties are

discussed in Brubaker and Bump [4].
If c and d are nonzero elements of oS, let

(
c
d

)
denote the power residue symbol.

Its properties are discussed in Brubaker and Bump [4]. We mention that it is mul-
tiplicative in both c and d, depends only on c modulo d, and also depends only on
the ideal generated by d. Most important is the reciprocity law( c

d

)
= (d, c)

(
d

c

)
. (2)

If 0 6= c ∈ oS, and t ∈ Z let

gt(α, c) =
∑

d mod c

(
d

c

)t

ψ

(
αd

c

)
,
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where
(

c
d

)
is the power residue symbol and ψ is a nontrivial additive character of

FS whose conductor is precisely oS; since oS is a principal ideal domain, such a
character always exists. The properties of Gauss sums are summarized in Brubaker
and Bump [4]. If t = 1 we may simply denote g1(α, c) = g(α, c).

Let Φ be a reduced root system. For each αi we choose a complex variable
sαi

= si. We will define a multiple Dirichlet series ZΨ(s) = ZΨ(s1, · · · , sr), which
will be a function of r complex variables. It will depend on an extra datum Ψ that
we will eventually describe, but first we give a rough “heuristic” description of ZΨ.
The heuristic description will be incorrect but suitable for fixing ideas. In discussing
the heuristic form the datum Ψ is not too important, and we suppress it from the
notation. It will be restored when we move past the heuristic form to a correct
definition of ZΨ.

In this Section we will make an assumption that is unrealistic but convenient
for heuristic purposes. It will be seen in our discussions that both Hilbert symbols
and power residues symbols appear; the power residue symbols are essential, but the
Hilbert symbols are only needed for bookkeeping purposes. A lot can be inferred by
ignoring them. We will therefore pretend that the symbol (c, d) is trivial, and that
reciprocity is perfect: ( c

d

)
=

(
d

c

)
.

Then the heuristic form of the Weyl group multiple Dirichlet series is

Z(s) =
∑

cα ∈ oS/o×S
(α ∈ ∆)

gα(cα)

[∏
α,β

(
cα
cβ

)−r(α,β)
] ∏

α∈∆

N(cα)−2sα .

where the product is over pairs of simple roots α and β, and notation is as follows.
Due to our assumption on reciprocity, it does not matter whether we take the pair
α, β or β, α, but we consider these to be the same pair, so there are 1

2
r(r− 1) factors

in the product. The Gauss sum is

gα(m) =


g1(1,m) if α is a short root,
g2(1,m) if α is a long root and Φ 6= G2.
g3(1,m) if α is a long root and Φ = G2,

and r(α, β) is defined by (1). The absolute norm N(cα) is the cardinality of oS/cαoS.
There is also a normalizing factor, N(s) = N(s1, · · · , sr). We will describe it

more precisely later; for the time being, let us only state that it is a product of zeta
functions and Gamma functions. We denote the normalized Dirichlet series as

Z∗(s) = N(s)Z(s).
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There are a couple of things that are wrong with this description. First, we have
made the unrealistic assumption of perfect reciprocity; we have written the sum as if
each term depends only on the ideal of cα, whereas what we have written will change
by a Hilbert symbol if cα is multiplied by a unit; and, most seriously, we have only
described the coefficient in the Dirichlet series in the very special case where the cα
are coprime.

Despite these defects, the heuristic Dirichlet series is useful for deducing proper-
ties of the corrected version ZΨ, which we will come to later. So we will draw what
conclusions we can from the heuristic form. The defects can all be fixed, as we will
eventually see.

We will make use of the functional equations of Kubota Dirichlet series , which
are the Dirichlet series formed with Gauss sums. Let

D(s, α) =
∑

0 6=c∈oS/o×S

g(α, c) N(c)−2s .

In writing this there is again an unrealistic assumption, since the summand is actually
not invariant under the action of units – but at the moment, we recall, we are
pretending that the Hilbert symbol is trivial, and accepting this fantasy g(α, εc) =
g(α, c) when ε ∈ o×S . Let

D∗(s, α) = Gn(s)
1
2
[F :Q] ζF (2ns− n+ 1)D(s, α),

where

Gn(s) = (2π)−(n−1)(2s−1) Γ(n(2s− 1))

Γ(2s− 1)
.

The exponent 1
2
[F : Q] is just the number of archimedean places of the totally

complex field F . By the multiplication formula for the Gamma function,

Gn(s) = (2π)−(n−1)(2s− 1
2
) n−1/2+n(2s−1)

n−1∏
j=1

Γ

(
2s− 1 +

j

n

)
.

Then D∗ has a functional equation, due to Kubota, which says (essentially)

D∗(s, α) = N(α)1−2sD∗(1− s, α). (3)

Once again, there are some problems to correct – the Dirichlet series D has not been
defined correctly, and the functional equation actually involves a finite scattering
matrix. See Section 3 (and [4]) for the correct definition and functional equation.
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More generally, let 0 < t ∈ Z be given, and let

Dt(s, α) =
∑

0 6=c∈oS/o×S

gt(α, c) N(c)−2s .

We define

D∗
t (s, α) = Gm(s)

1
2
[F :Q] ζF (2ms−m+ 1)Dt(s, α), m =

n

gcd(n, t)
. (4)

This value of m appears since gt is an m-th order Gauss sum.
The heuristic definition is sufficient to predict the variable changes for the func-

tional equations that Z will satisfy. It also predicts the normalizing factor of Z. We
illustrate these points with two examples, one simply-laced, the other not.

As a first example, consider the root system of Cartan type A2, whose Weyl group
is isomorphic to the symmetric group S3. There are two simple positive roots α1 and
α2, and the root system looks like this:

α1

α2

The three positive roots are marked in black, the three negative ones in white.
The roots α1 and α2 make an angle of 2π

3
. These facts can also be read off from the

Dynkin diagram:

α1 α2

We see that

Z(s1, s2) =
∑
c1,c2

g(1, c1) g(1, c2)

(
c1
c2

)−1

N(c1)
−2s1 N(c2)

−2s2 . (5)

Since |g(1, c1)| = Nc1/2
1 , this series is absolutely convergent in the region

Λ0 =

{
(s1, s2) ∈ C2 | re(s1), re(s2) >

3

4

}
.
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Let us first consider the functional equation with respect to s1. As we will see,
this functional equation has the form

σ1 =

{
s1 7−→ 1− s1,
s2 7−→ s1 + s2 − 1

2
.

(6)

We have

g(1, c1)

(
c1
c2

)−1

= g(c2, c1),

so

Z(s1, s2) =∑
c2

g(1, c2)

[∑
c1

g(c2, c1)N(c1)
−2s1

]
N(c2)

−2s2 =∑
c2

g(1, c2)D(s1, c2) N(c2)
−2s2 .

Now it is expected that this expression has analytic continuation a larger region than
the original sum; indeed, this representation gives continuation to this region

Λ1 =

{
(s1, s2) ∈ C2 | re(s2), re

(
s1 + s2 −

1

2

)
>

3

4
, re

(
s1 + 2s2 −

1

2

)
>

7

4

}
.

( 1

2
,

1

2
)

( 3

4
,

3

4
)

Λ0

s1 = 1

2

s2 = 1

2 ( 1

2
,

1

2
)

( 3

4
,

3

4
)

Λ1
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In this figure, illustrating Λ0 and Λ1, we are representing the complex pair (s1, s2)
by its real part (re(s1), re(s2)). We have tilted the s2 axis so that σ1 is a rigid motion;
it is the reflection in the marked line s1 = 1

2
. The region Λ1 is the convex hull of

Λ0 ∪ σ1Λ0.
There is, similarly, a functional equation

σ2 =

{
s1 7−→ s1 + s2 − 1

2
,

s2 7−→ 1− s2,
(7)

which is the reflection in the other marked line s2 = 1
2
. This gives analytic continu-

ation to the region

Λ2 =

{
(s1, s2) ∈ C2 | re(s1), re

(
s1 + s2 −

1

2

)
>

3

4
, re

(
2s1 + s2 −

1

2

)
>

7

4

}
. (8)

Together the transformations σ1 and σ2 generate the A2 Weyl group, isomorphic to
the symmetric group S3. The analytic continuation to all (s1, s2) now follows by an
argument based on Bochner’s Theorem. See Theorem 2 below.

We can now prescribe the normalizing factor N(s1, s2). It is

Gn(s1) Gn(s2) Gn

(
s1 + s2 −

1

2

)
×ζF (2ns1 − n+ 1) ζF (2ns2 − n+ 1) ζF (2ns1 + 2ns2 − 2n+ 1).

With this factor we have

Z∗(s1, s2) =

Gn(s2) Gn

(
s1 + s2 −

1

2

)
ζF (2ns2 − n+ 1) ζF (2ns1 + 2ns2 − 2n+ 1)×∑

c2

g(1, c2)D∗(s1, c2) N(c2)
−2s2 .

Now the functional equation (6) is perfect – the two factors

Gn(s2)ζF (2ns2 − n+ 1) and Gn

(
s1 + s2 −

1

2

)
ζF (2ns1 + 2ns2 − 2n+ 1)

are interchanged, and the third factor has been absorbed into D∗. Note that in the
functional equation (3) the series D∗(s1, c2) is related to N(c2)

1−2s1D∗(1− s1, c2), so
the Dirichlet series is transformed into∑

c2

g(1, c2)D∗(1− s1, c2) N(c2)
1−2s1−2s2 ,
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from which we get (6).
Next let us consider an example that is not simply laced. We consider the B2

root system, which looks like this:

α1

α2

ρ

In this example, we have the heuristic series

Z(s1, s2) =
∑
c1,c2

g2(c1) g1(c2)

(
c1
c2

)−2

N(c1)
−2s1 N(c2)

−2s2 .

We can write

Z(s1, s2) =
∑
c2

g1(c2)

[∑
c1

g2(c2, c1)N(c1)
−2s1

]
N(c2)

−2s2 =∑
c2

g1(c2)D2(s1, c2) N(c2)
−2s2 ,

which gives us the functional equation{
s1 7−→ 1− s1,
s2 7−→ s1 + s2 − 1

2
.

More interestingly, if we write

Z(s1, s2) =
∑
c1

g2(c1)

[∑
c2

g1(c
2
1, c2) N(c2)

−2s2

]
N(c1)

−2s1 =∑
c1

g2(c1)D(s2, c
2
1) N(c1)

−2s1 ,
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from which we deduce the functional equation{
s1 7−→ s1 + 2s1 − 1,
s2 7−→ 1− s2.

The two functional equations generate a group isomorphic to the Weyl group of Φ,
which is of order 8.

In this example, there is a difference between the case where n is even and the
case where n is odd. Although the group of functional equations is independent of
the parity of n, the normalizing factor is dependent . This is because of (4). When
t = 2, the factor m = n/ gcd(2, n) is needed for the factor D2 coming from the long
root. The normalizing factor is

Gn(s1)ζF (2ns1 − n+ 1) Gn(s1 + s2 −
1

2
)ζF (2ns1 − 2n+ 1)

Gm(s2)ζF (2ms2 −m+ 1) Gm(2s1 + s2 − 1)ζF (4ms1 + 2ms2 − 2m+ 1),

and the meaning of m is dependent on the parity of n.
Although the “heuristic” Dirichlet series is too unrealistic to be a perfect guide,

we have just seen that it can predict the group of functional equations. It can also
predict the multiplicativity of the coefficients, as we will now consider.

Returning to the A2 example to explain this point, the heuristic form (5) is a
stand-in for an actual Dirichlet series

ZΨ(s1, s2) =
∑
c1,c2

H(c1, c2) Ψ(c1, c2) N(c1)
−2s1 N(c2)

−2s2 . (9)

The factor Ψ can be ignored for the time being; in this section we write

Z(s1, s2) =
∑
c1,c2

H(c1, c2) N(c1)
−2s1 N(c2)

−2s2 .

The coefficients H(c1, c2) will have a “twisted” multiplicativity. True multiplicativity
would be the statement that if gcd(c1c2, c

′
1c
′
2) = 1 then

H(c1c
′
1, c2c

′
2) = H(c1, c2)H(c′1, c

′
2).

This is not true. Instead, we have

H(c1c
′
1, c2c

′
2) = H(c1, c2)H(c′1, c

′
2)

(
c1
c′1

) (
c′1
c1

) (
c2
c′2

) (
c′2
c2

) (
c1
c′2

)−1 (
c′1
c2

)−1

. (10)
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Of course we are currently pretending that all Hilbert symbols are trivial so that(
c
c′

)
=

(
c′

c

)
; one might therefore write the right-hand side as

H(c1, c2)H(c′1, c
′
2)

(
c1
c′1

)2 (
c2
c′2

)2 (
c1
c′2

)−1 (
c′1
c2

)−1

.

We have written (10) without this “simplification” since as written it is correctly
stated, even without the simplifying assumption that all Hilbert symbols are trivial.

The multiplicativity (10) can be checked when all four parameters c1, c2, c
′
1 and

c′2 are mutually coprime using the fact that

g(m, cc′) =
( c
c′

) (
c′

c

)
g(m, c) g(m, c′), if c, c′ are coprime. (11)

In this case we have specified

H(c1, c2) = g(1, c1) g(1, c2)

(
c1
c2

)−1

.

The most serious defect in the heuristic form of the multiple Dirichlet series is
that we have only specified H(c1, c2) when c1, c2, c

′
1 and c′2 are pairwise coprime.

However we have made some progress towards giving the general recipe, since we
have deduced the multiplicativity (10). It is a small leap to guess that this formula
is correct assuming only that gcd(c1c2, c

′
1c
′
2) = 1. Given (10), we are reduced to

specifying H(c1, c2) when c1 and c2 are powers of the same prime p. As we will see in
the following section, this question turns out to have a simple and beautiful answer
if n is sufficiently large.

2 The Stable Case

As we have explained in Section 1, the “heuristic” formula for the Dirichlet series is
sufficient to deduce the multiplicativity of the terms, which reduces their specification
to that of the p-part, where p is a prime of oS. By this, we mean the coefficients

H(pk1 , · · · , pkr). (12)

We will specify these in this section.
As in Section 1, no Hilbert symbols will appear in this section. How the defects

of the “heuristic” Dirichlet series are to be corrected has yet to be revealed, and will
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be taken up in the next section. But we are now outside the heuristic realm, and the
formulas that we give for the p-part are exactly correct. The fact that no symbols
appear in this section, yet the statements will require no further revision may appear
surprising – see Remark 1 below for the explanation of this paradox.

There is an important caveat: we will give exact formulas for the terms (12), but
these are only correct if n is sufficiently large. The meaning of “sufficiently large”
is easiest to explain if Φ is simply laced. In this case, let α be the longest positive
root, and write α =

∑
i diαi where, we recall, the αi are the simple positive roots.

In this case, if n >
∑

i di then the formulas we give will be correct. We call this the
stable case. (If Φ is not simply laced, see Brubaker, Bump and Friedberg [5] for the
precise condition that n must satisfy for stability.)

In the unstable case (where n is small) the multiple Dirichlet series should exist
and the nonzero coefficients that we describe will be present. However there will be
other nonzero coefficients as well. We do not yet have a precise description of the
terms (12) that is valid in the unstable case when Φ is an arbitrary root system.
However a conjectural statement when Φ = Ar may be found in Brubaker, Bump,
Friedberg and Hoffstein [6]. This conjectural description describes the coefficients as
sums of products of Gauss sums indexed by Gelfand-Tsetlin patterns. It is proved
correct when r = 2, or n = 1, and is consistent with results of Chinta [12] that
describe the Weyl group multiple Dirichlet series for Ar when r 6 5 and n = 2.

Define the support of H to be

Supp(H) = {(k1, · · · , kr) |H(pk1 , · · · , pkr) 6= 0}.

It will be seen that this set, which does not depend on p, is finite, and in the stable
case, is in bijection with the elements of the Weyl group.

Let

ρ =
1

2

∑
α∈Φ+

α.

If w ∈ W , the Weyl group, we have

ρ− w(ρ) =
∑

α ∈ Φ+

w−1(α) ∈ Φ−

α.

These |W | points form a figure that is congruent to supp(H). Before we give the
general presecription, let us illustrate this point with a couple of examples.

First, if Φ is of type A2, the points ρ−w(ρ) are marked by stars in the following
figure:
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α1

α2 ρ

⋆ ⋆

⋆ ⋆

⋆ ⋆

The black dots are the positive roots; two of them, at the simple roots α1 and α2,
are obscured by stars. The white dots are the negative roots. It will be noted that
the stars form a hexagon. Here, for comparison, are the nonzero values of H(pk1 , pk2)
for the A2 Weyl group multiple Dirichlet series:

(k1, k2) H(pk1 , pk2)
(0, 0) 1
(1, 0) g1(1, p)
(0, 1) g1(1, p)
(1, 2) g1(1, p)g1(p, p

2)
(2, 1) g1(1, p)g1(p, p

2)
(2, 2) g1(1, p)

2 g1(p, p
2)

(13)

Thus
supp(H) = {(0, 0), (1, 0), (0, 1), (1, 2), (2, 1), (2, 2)}

is a hexagon – exactly the shape of the figure of starred points ρ − w(ρ). More
precisely, the possible values of k1α1 + k2α2 are exactly the set of ρ− w(ρ).

As a second example, which is not simply-laced, suppose that Φ is of type B2.
The points ρ− w(ρ) are the starred vertices in the following diagram.
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α1

α2

ρ

⋆ ⋆

⋆

⋆ ⋆

⋆

⋆ ⋆

Again, the roots are labeled by dots (black for the positive roots, white for the
negative ones) and the values of ρ − w(ρ) are marked by stars. The nonzero values
of H(pk1 , pk2) are given by the following table:

k1

k2

0 1 2 3
0 1 g2(1, p)
1 g1(1, p) g1(1, p)g2(p, p

2)
2

3 g2(1, p)g1(p
2, p3)

g2(1, p)g2(p, p
2)

×g1(p
2, p3)

4
g1(1, p)g2(p, p

2)
×g1(p

2, p3)
g2(1, p)g1(1, p)

×g2(p, p
2)g1(p

2, p3)

Thus
supp(H) = {(0, 0), (1, 0), (0, 1), (2, 1), (1, 3), (3, 3), (2, 4), (3, 4)}

is precisely the set of (k1, k2) such that k1α1 + k2α2 can be expressed as ρ−w(ρ) for
some w ∈ W .

We will now describe the coefficients H(pk1 , · · · , pkr) in the stable case. If α ∈ Φ,
we write

d(α) =
∑

i

ci, where α =
∑
αi∈∆

ciαi.
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Then we write
H(pk1 , · · · , pkr) =

∏
α ∈ Φ+

w(α) ∈ Φ−

gα(pd(α)−1, pd(α))

if there exists a w ∈ W such that

r∑
i=1

kiα = ρ− w(ρ),

while H(pk1 , · · · , pkr) = 0 if no such w exists.
Returning to the case Φ = B2, we embed the root system into R2 so that the

simple roots and coroots are

α1 = (1, 0), α2 =

(
−1

2
,
1

2

)
.

The following table shows how the H(k1, k2) are to be computed.

w(ρ) ρ− w(ρ) (k1, k2) α ∈ Φ+, w(α) ∈ Φ− ∏
gα(pd(α)−1, pd(α))(

1
2
, 1

)
0 (0, 0) none 1(

1, 1
2

) (
−1

2
, 1

2

)
(0, 1) α2 g1(1, p)(

−1
2
, 1

)
(1, 0) (1, 0) α1 g2(1, p)(

−1, 1
2

) (
3
2
, 1

2

)
(2, 1) α2, α1 + α2 g1(1, p) g2(p, p

2)(
1
2
,−1

)
(0, 2) (2, 4) α2, α1 + α2, 2α1 + α2

g1(1, p) g2(p, p
2)

g1(p
2, p3)(

1,−1
2

) (
−1

2
, 3

2

)
(1, 3) α1, 2α1 + α2 g2(1, p)g1(p

2, p3)(
−1

2
,−1

)
(1, 2) (3, 4) α1, α2, α1 + α2, 2α1 + α2

g2(1, p) g1(1, p)
g2(p, p

2) g1(p
2, p3)(

−1,−1
2

) (
3
2
, 3

2

)
(3, 3) α1, α1 + α2, 2α1 + α2

g2(1, p)
g2(p, p

2) g1(p
2, p3)

3 The A2 Weyl group multiple Dirichlet series

The Weyl group multiple Dirichlet series are, at this point of the paper, only partly
defined. Coefficients H(pk1 , · · · , pkr) have been defined, but other aspects such as
the multiplicativity have only been discussed under the unrealistic assumption that
the Hilbert symbols can be ignored. We will give a completely rigorous discussion
now of the case where Φ = A2, as an introduction to the more general case which
will be treated in [5].
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We begin by recalling the functional equations of Kubota Dirichlet series. The
results of Kubota [18] were extended by Eckhardt and Patterson [13] and by Brubaker
and Bump [4]. We consider [4] to be a companion piece and assume that the reader
has it handy for reference.

Let F be an algebraic number field. As in the introduction we assume that F
contains µn and that −1 is an n-th power in F , and other notations such as S, oS,
ψ, etc. will be as in the introduction.

We say a subgroup Υ of F×
S is isotropic if the Hilbert symbol (ε, δ) = 1 for all

ε, δ ∈ Υ. In particular, the group Ω = o×S (F×
S )n is maximal isotropic. Let M(Ω) be

the finite-dimensional vector space of functions Ψ on F×
fin that satisfy

Ψ(εc) = (ε, c) Ψ(c), (14)

when ε ∈ Ω. Note that if ε is sufficiently close to the identity in F×
S it is an n-

th power hence lies in Ω, so such a function is locally constant. The dimension
of M(Ω) is equal to the cardinality of F×

S /Ω, which is finite. See Brubaker and
Bump [4], Lemma 3.

If Ψ ∈M(Ω), define

D(s,Ψ, α) =
∑

0 6=c∈oS/o×S

g(α, c) Ψ(c) N(c)−2s .

Here N(c) = |c| is the order of oS/coS. The term g(α, c) Ψ(c) N(c)−2s is independent
of the choice of representative c modulo o×S by (14) and the fact that if ε ∈ o×S we
have

g(α, εc) = (c, ε) g(α, c). (15)

(See Brubaker and Bump [4] for details.) The normalized Kubota Dirichlet series is

D∗(s,Ψ, α) = Gn(s)
1
2
[F :Q] ζF (2ns− n+ 1)D(s,Ψ, α). (16)

If v ∈ Sfin let qv denote the cardinality of the residue class field ov/pv, where ov is
the local ring in Fv and pv is its prime ideal. By an S-Dirichlet polynomial we mean
a polynomial in q−2s

v as v runs through the finite number of places in Sfin. Also if
Ψ ∈M(Ω) and η ∈ F×

S denote

Ψ̃η(c) = (η, c) Ψ(c−1η−1). (17)

One may easily check that Ψη is in M(Ω).
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Theorem 1 Let Ψ ∈ M(Ω), and let α ∈ oS. Then D∗(s,Ψ, α) has meromorphic
continuation to all s, analytic except possibly at s = 1

2
± 1

2n
, where it might have

simple poles. There exist S-Dirichlet polynomials Pη(s) depending only on the image
of η in F×

S /(F
×
S )n such that

D∗(s,Ψ, α) =
∑

η∈F×S /(F×S )n

N(α)1−2sPαη(s)D∗(1− s, Ψ̃η, α). (18)

This is proved in Brubaker and Bump [4]; very similar results are in Eckhardt
and Patterson [13].

Let M(Ω2) be the finite-dimensional vector space of functions Ψ : Ffin×Ffin −→ C
such that when ε1 and ε2 are in Ω

Ψ(ε1c1, ε2c2) = (ε1, c1) (ε−1
1 ε2, c2) Ψ(c1, c2). (19)

The dimension of M(Ω2) is the square of the cardinality of F×
S /Ω, by adapting the

proof of Brubaker and Bump [4], Lemma 3.
We will define a function H(c1, c2) on o×S × o×S which satisfies the “twisted mul-

tiplicativity”

H(c1c
′
1, c2c

′
2) = H(c1, c2)H(c′1, c

′
2)

(
c1
c′1

) (
c′1
c1

) (
c2
c′2

) (
c′2
c2

) (
c1
c′2

)−1 (
c′1
c2

)−1

. (20)

It is understood that H(ε1, ε2) = 1 when ε1 and ε2 are units, so using the special
case (ε

c

)
= (c, ε) when ε ∈ o×S

of the reciprocity law, (20) includes the rule

H(ε1c1, ε2c2) = H(c1, c2)(c1, ε1)(c2, ε2)(c2, ε1)
−1. (21)

This means that if Ψ ∈ M(Ω2) the function H(c1, c2) Ψ(c1, c2) depends only on the
values of c1 and c2 in oS/o

×
S , and so the multiple Dirichlet series ZΨ defined by (9)

can be written down.
Specification of a function H satisfying (20) is clearly reduced to the specification

of H(pk1 , pk2) for primes p of oS, and these are specified by (13).

Remark 1 It may be checked using (21) and (15) that if we change p to q = εp,
where ε is a unit, then this rule is unchanged, namely

H(1, 1) = 1,

H(1, q) = H(q, 1) = g(1, q),

H(q, q2) = H(q2, q) = g(1, q) g(q, q2),

H(q2, q2) = g(1, q)2 g(q, q2).
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No Hilbert symbols appear in these formulae! Thus it does not matter what rep-
resentatives we chose for the prime ideals – the definition of H is invariant. This
observation explains the paradox noted at the beginning of Section 2.

Now let A be the ring of (Dirichlet) polynomials in q±2s1
v , q±2s2

v where v runs
through the finite set Sfin of places. Let M = A⊗M(Ω2). We may regard elements
of M as functions Ψ : C2 × (F×

S )2 −→ C such that for all (s1, s2) ∈ C2 the function

(c1, c2) 7−→ Ψ(s1, s2, c1, c2)

is in M(Ω2), while for all (c1, c2) ∈ (F×
S )2, the function

(s1, s2) 7−→ Ψ(s1, s2, c1, c2)

is in A. As a notational point, we will sometimes use the notation

Ψs(c1, c2) = Ψ(s1, s2, c1, c2), s = (s1, s2) ∈ C2. (22)

We identify M(Ω) with its image 1 ⊗M(Ω) in M; this just consists of the Ψs that
are independent of s ∈ C2.

We define two operators σ1 and σ2 on C2 by (6) and (7). They satisfy the braid
relation

σ1σ2σ1 = σ2σ1σ2 (23)

as well as
σ2

1 = 1, σ2
2 = 1. (24)

The relations (23) and (24) are a presentation of the symmetric group S3. We will
denote this transformation group of C2 by W .

We define operators σ1 and σ2 on M by

(σ1Ψs)(c1, c2) = (σ1Ψ)(s1, s2, c1, c2) =∑
η∈F×S /(F×S )n

(η, c1c
−1
2 )Pc2c−2

1 η(s1)Ψ

(
1− s1, s1 + s2 −

1

2
, η−1c1, c2

)

and

(σ2Ψs)(c1, c2) = (σ2Ψ)(s1, s2, c1, c2) =∑
η∈F×S /(F×S )n

(η, c2)Pc1c−2
2 η(s2)Ψ

(
s1 + s2 −

1

2
, 1− s2, c1, η

−1c2

)
.
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Proposition 1 If Ψ ∈ M, then σ1Ψ and σ2Ψ are in M.

Proof Let ε1 and ε2 ∈ Ω. We have

(σ1Ψ)(s1, s2, ε1c1, ε2c2) =∑
η∈F×S /(F×S )n

(η, ε1ε
−1
2 c1c

−1
2 )Pε2ε−2

1 c2c−2
1 η(s1)Ψ

(
1− s1, s1 + s2 −

1

2
, η−1ε1c1, ε2c2

)
.

Making the variable change η 7−→ ε−1
2 ε2

1η and using the fact that Ψ ∈ M, this equals∑
η∈F×S /(F×S )n

(ε−1
2 ε2

1η, ε1ε
−1
2 c1c

−1
2 )Pc2c−2

1 η(s1)Ψ

(
1− s1, s1 + s2 −

1

2
, η−1ε2ε

−1
1 c1, ε2c2

)
=

(ε−1
2 ε2

1, c1c
−1
2 )

∑
η∈F×S /(F×S )n

(η, ε1ε
−1
2 c1c

−1
2 )(ε2ε

−1
1 , η−1c1)(ε1, c2)Pc2c−2

1 η(s1)

×Ψ

(
1− s1, s1 + s2 −

1

2
, η−1c1, c2

)
=

(ε1, c1)(ε2ε
−1
1 , c2)(σ1Ψ)(s1, s2, c1, c2),

proving that σ1Ψ ∈ M; the case of σ2Ψ is similar. �

Let W be the group of automorphisms of M generated by σ1 and σ2. This will
turn out to be the group of functional equations of the multiple Dirichlet series.
Clearly there is a homomorphism W −→ W , where we recall that W ∼= S3 is the
group of transformations of C2 generated by σ1 and σ2. It is an interesting question
to determine the kernel of this homomorphism W −→ W . One might hope that this
kernel is finite and perhaps trivial if Ω.

Theorem 2 Let Ψs ∈ M. The function ZΨs(s1, s2) defined by (9) is convergent in
the region Λ0 defined by re(s1), re(s2) >

3
4
. It has meromorphic continuation to all s1

and s2; it is analytic except where s1, s2 or 3
2
− s1 − s2 equals 1

2
± 1

2n
, and it satisfies

Z∗σΨs
(σs) = Z∗Ψs

(s) (25)

for all σ ∈ W.

This is a special case of the Theorem 5.9 in [5].
Proof The function Ψ is bounded as a function of c1 and c2 because Ω2 has finite
index in (F×

S )2, by (19). To prove convergence on Λ0 it is sufficient to show that
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(with re(s1), re(s2) > 3
4

+ ε)

∞ >
∑

|H(c1, c2) N(c1)
−2s1N(c2)

−2s2|

>
∏

p

∑
k1,k2

|H(pk1 , pk2) |N(p)−
3
2
(k1+k2)−4ε.

It is easy to check that for the 5 possible (k1, k2) 6= (0, 0) such that H(pk1 , pk2) 6= 0
we have

H(pk1 , pk2)N(p)−
3
2
(k1+k2)−4ε = O(Np−1−4ε).

Thus ∑
k1,k2

|H(pk1 , pk2) |N(p)−
3
2
(k1+k2)−4ε = 1 +O(Np−1−4ε)

and the convergence follows by comparison with the Dedekind zeta function.
Using standard bounds for the Gauss sums, we have

|H(c1, c2) N(c1)
−2s1N(c2)

−2s2| < N(c1)
1
2
−2 re(s1)N(c2)

1
2
−2 re(s2).

It follows that (9) is convergent in Λ0.
If (c1, c2) = (γ1p

k1 , γ2p
k2) where p - γi and k1 6 2 we say c2 is c1-reduced at p if

(k1, k2) occur in the following table:

k1 k2

0 0
1 0
2 1

We say that c2 is c1-reduced if it is c1-reduced at p for all p.

Lemma 1 We have H(c1, c2) = 0 unless c1 is cubefree and c2 is a multiple of a
c1-reduced integer. If c1 is cubefree and c2 is a c1-reduced integer, then H(c1, c2) 6= 0.

Proof This is clear from the definition of H. �

Lemma 2 Suppose that c1 is cube-free and that c2 is c1-reduced. Then c0 = c1c
−2
2 ∈

oS and for every α ∈ oS we have

H(c1, αc2)

H(c1, c2)
(α, c2) = g(c0, α). (26)
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Proof It is clear from the definition of c1-reduced that c22 divides c1. Since c1 and
c2 are fixed, let h(α) denote the expression on the left-hand side of (26). We first
check that the multiplicativity of h matches that of a Gauss sum. Let (α, β) = 1.
Factor c1 = γ1γ

′
1 and c2 = γ2γ

′
2 where (αγ1γ2, βγ

′
1γ

′
2) = 1. Then expanding

h(αβ)

h(α)h(β)
=

H(γ1γ
′
1, αβγ2γ

′
2)H(γ1γ

′
1, γ2γ

′
2)

H(γ1γ′1, αγ2γ′2)H(γ1γ′1, βγ2γ′2)

(αβ, c2)

(α, c2)(β, c2)

=

(
γ1

γ′1

) (
γ′1
γ1

) (
γ2

γ′2

) (
γ′2
γ2

) (
γ1

γ′2

)−1 (
γ′1
γ2

)−1

×
(
γ1

γ′1

) (
γ′1
γ1

) (
αγ2

βγ′2

) (
βγ′2
αγ2

) (
γ1

βγ′2

)−1 (
γ′1
αγ2

)−1

÷
(
γ1

γ′1

) (
γ′1
γ1

) (
γ2

βγ′2

) (
βγ′2
γ2

) (
γ1

βγ′2

)−1 (
γ′1
γ2

)−1

÷
(
γ1

γ′1

) (
γ′1
γ1

) (
αγ2

γ′2

) (
γ′2
αγ2

) (
γ1

γ′2

)−1 (
γ′1
αγ2

)−1

=

(
α

β

) (
β

α

)
.

Comparing with (11), it is sufficient to check (26) when α = pr. We factor c1 = γ1p
k1 ,

c2 = γ2p
k2 where p - γi. Then h(pr) equals

H(γ1p
k1 , γ2p

k2+r)

H(γ1pk1 , γ2pk2)
(pr, c2)

= (pr, c2)

(
γ1

pk1

) (
pk1

γ1

) (
γ2

pk2+r

) (
pk2+r

γ2

) (
γ1

pk2+r

)−1 (
pk1

γ2

)−1

H(pk1 , pk2+r)H(γ1, γ2)

÷

[(
γ1

pk1

) (
pk1

γ1

) (
γ2

pk2

) (
pk2

γ2

) (
γ1

pk2

)−1 (
pk1

γ2

)−1

H(pk1 , pk2)H(γ1, γ2)

]

= (pr, c2)

(
γ2

pr

) (
pr

γ2

) (
γ1

pr

)−1
H(pk1 , pk2+r)

H(pk1 , pk2)
.

Since (p, p) = 1, (pr, c2) = (pr, γ2), so by the reciprocity law

h(pr) =

(
γ−2

2 γ1

pr

)−1
H(pk1 , pk2+r)

H(pk1 , pk2)
.

Table (13) shows that for k1 and k2 given (such that pk2 is pk1-reduced) there are
exactly two values of r for which h(pr) is nonzero: they are r = 0 and r = k1− 2k2 +
1 = ordp(c0) + 1.
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If r = 0, then h(1) = 1. We may therefore assume that r = ordp(c0) + 1. In this
case, we have

H(pk1 , pk2+r)

H(pk1 , pk2)
= g(pr−1, pr)

as may be seen from the following table.

k1 k2 r = ordp(c0) + 1 H(pk1 , pk2+r)/H(pk1 , pk2)
0 0 1 g(1, p)
1 0 2 g(p, p2)
2 1 1 g(1, p)

We have

h(pr) =

(
γ−2

2 γ1

pr

)−1

g(pr−1, pr) = g(γ1γ
−2
2 pr−1, pr).

We are done since with our assumption that r = ordp(c0)+1 we have γ1γ
−2
2 pr−1 = c0.

This proves the Lemma. �

For c1 and c2 given, if Ψ ∈M(Ω2), or more generally if Ψ = Ψs ∈ M let

Ψc1,c2(α) = Ψ(c1, αc2) (α, c2)
−1.

Lemma 3 The function Ψc1,c2 ∈M(Ω).

Proof This is easily checked using (19). �

Lemma 4 We have

ZΨ(s1, s2) =
∑

0 6= c1, c2 ∈ o×S \oS

c1 cube-free
c2 c1-reduced

Nc−2s1
1 Nc−2s2

2 H(c1, c2)D(s2,Ψ
c1,c2 , c1c

−2
2 ). (27)

Proof By Lemma 1, we may rewrite (9) by first summing over c1 cubefree, then
replacing c2 by c2d2, where c2 is a fixed generator of the ideal of c1-reduced elements
of oS and d2 is summed over oS/o

×
S . Then invoking (26) the summation over d2

produces D(s2,Ψ
c1,c2 , c1c

−2
2 ), and the statement follows. �

Lemma 5 We have, for Ψ ∈ M

D∗(s2,Ψ
c1,c2 , c1c

−2
2 ) = N(c1c

−2
2 )1−2s2D∗(1− s2, (σ2Ψ)c1,c2 , c1c

−2
2 ). (28)
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Proof By Theorem 1 we have

D∗(s2,Ψ
c1,c2 , c1c

−2
2 ) =

∑
η∈F×S /(F×S )n

N(c1c
−2
2 )1−2s2Pc1c−2

2 η(s2)D∗(1− s2, Ψ̃
c1,c2
η , c1c

−2
2 ),

where with our definitions

Ψ̃c1,c2
η (d) = (η, d)Ψc1,c2(d−1η−1) = (η, d) (dη, c2) Ψ(c1, d

−1η−1c2).

(We are suppressing the dependence of Ψ on s from the notation.) Now we take s2

to have large negative real part so that the right-hand side can be expanded out as
a Dirichlet series. Thus D∗(s2,Ψ

c1,c2 , c1c
−2
2 ) equals∑

η∈F×S /(F×S )n

N(c1c
−2
2 )1−2s2Pc1c−2

2 η(s2)D∗(1− s2, Ψ̃
c1,c2
η , c1c

−2
2 ) =

∑
η∈F×S /(F×S )n

N(c1c
−2
2 )1−2s2Pc1c−2

2 η(s2)

∑
0 6=d∈oS/o×S

g(c1c
−2
2 , d) Nd2s2−2(η, d c2)(d, c2) Ψ(c1, d

−1η−1c2) =

∑
0 6=d∈oS/o×S

∑
η∈F×S /(F×S )n

N(c1c
−2
2 )1−2s2Pc1c−2

2 d−2η(s2)

g(c1c
−2
2 , d) Nd2s2−2(d−2η, d c2)(d, c2) Ψ(c1, dη

−1c2) =∑
0 6=d∈oS/o×S

∑
η∈F×S /(F×S )n

N(c1c
−2
2 )1−2s2Pc1c−2

2 d−2η(s2)

g(c1c
−2
2 , d) Nd2s2−2(η, d c2)(d, c2)

−1 Ψ(c1, η
−1dc2) =∑

0 6=d∈oS/o×S

N(c1c
−2
2 )1−2s2(σ2Ψ) (s1, s2, c1, dc2) g(c1c

−2
2 , d) Nd2s2−2(d, c2)

−1 =

N(c1c
−2
2 )1−2s2D∗(1− s2, (σ2Ψ)c1,c2 , c1c

−2
2 ),

where we have made a variable change η 7−→ d−2η and used the fact that (d, d) = 1.
This completes the proof of the Lemma. �

Lemma 6 The function Z∗Ψ(s1, s2) has meromorphic continuation to the region Λ2

defined by (8), and satisfies the functional equation

Z∗σ2Ψ(σ2s) = Z∗Ψ(s).

It is analytic except where s2 = 1
2
± 1

2n
.
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Proof The expression (27) gives the continuation to the region Ω2. The functional
equation follows by combining (27) with (28); note that of the normalizing factor
of Z,

Gn(s2) ζF (2ns2 − n+ 1)

is needed to normalize D, while the remaining parts are interchanged by the trans-
formation (7). �

There is of course also a second functional equation corresponding to (6). This
is similar and we omit details of it. We note that the Hilbert symbols that appear
look slightly different since we made an arbitrary choice in writing (20) by choosing
the last two symbols to be(

c1
c′2

)−1 (
c′1
c2

)−1

instead of

(
c′2
c1

)−1 (
c2
c′1

)−1

.

Thus merely interchanging the two coordinates does not quite preserve the space
M(Ω2). Instead, if Ψ ∈M(Ω2) then so is Ψ′ defined by

Ψ′(c1, c2) = (c2, c1)Ψ(c2, c1),

and conjugating σ2 by this involution of M(Ω2) (while interchanging the roles of s1

and s2) gives the transformation σ1 of M. We have, as in Lemma 6 the functional
equation

Z∗σ1Ψ(σ1s) = Z∗Ψ(s). (29)

We may now prove the global meromorphic continuation of Z∗(s). First we obtain
continuation of ZΨ to the region (with Λ1 and Λ2 as in Section 1)

Λ1 ∪ Λ2 ∪ σ−1
1 Λ2.
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( 3

4
,

3

4
)

( 1

4
, 1)

(0,
3

4
)

(1,
1

4
)

Λ1 ∪ Λ2 ∪ σ
−1

1
Λ2

On Λ2, we have already noted the analytic continuation in Lemma 6, and the
continuation to Λ1 is given by the same method, and on the region Λ1 we have
(29). Of course, the two continuations agree on the overlap Λ1 ∩ Λ2 = Λ0. Now the
continuation to σ1Λ2 is obtained by the formula

Z∗Ψ(σ−1
1 s) = Z∗σ1Ψ(s), s ∈ Λ2, (30)

and we must check that the continuations agree on the overlap Λ1∩Λ2∩σ−1
1 Λ2 = σ1Λ0;

indeed, if s = σ1s
′ where s′ ∈ Λ0 then the right-hand side of (30) equals

Z∗Ψ(σ−1
1 s) = Z∗σ1Ψ(s) = Z∗σ1Ψ(σ1s

′) = Z∗Ψ(s′),

where at the last step we have used (29). This is the same as the left-hand side
of (30). In conclusion, we have obtained the analytic continuation of ZΨ as a well-
defined function on Λ1 ∪Λ2 ∪σ−1

1 Λ2. This region is a simply connected tube domain
whose convex hull is all of C2, and so the meromorphic continuation to C2 follows
from Bochner’s Tube Domain Theorem (Bochner [1] or Hormander [16], Theorem
2.5.10). Note that Bochner’s theorem applies to analytic functions; so we apply it to
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the function(
s1 −

1

2
− 1

2n

) (
s1 −

1

2
+

1

2n

) (
s2 −

1

2
− 1

2n

) (
s2 −

1

2
+

1

2n

)
(

1− s1 − s2 −
1

2n

) (
1− s1 − s2 +

1

2n

)
ZΨ(s).

Now when σ = σ1 or σ2, (25) is known when s ∈ Λ0, and by analytic continuation
it is therefore true for all s ∈ C2. It follows that it is true for the group W they
generate.

This completes the proof of Theorem 2. �

4 Examples

In this section, we will discuss some examples. We return to the “heuristic” viewpoint
of Section 1. The heuristic point of view is best for quickly grasping the relationships
between various objects, before making those relationships rigorous along the lines
of Section 3.

In the case where n = 2, there is little harm in replacing the quadratic Gauss
sum g(α, c) by simply

(
α
c

)
Nc−1/2 in the definition of Z(s). (For simplicity, let us

restrict ourselves to the simply-laced case.) Thus we obtain the heuristic form

Z(s) =
∑

0 6= cα ∈ oS/o×S
(α ∈ ∆)

[ ∏
α, β not orthogonal

(
cα
cβ

)] ∏
α∈∆

N(cα)
1
2
−2sα .

In the three cases where Φ = A2, A3 and D4, the Dynkin diagram of Φ is a “star”
with one vertex adjacent to all others; let us call the corresponding root α1, and
the others α2, · · · , αr, where r = 2, 3 or 4 is the rank. Then, denoting D = cα1 and
ci = cαi

(i = 2, · · · , r) we have

Z(s) =
∑

D, ci ∈ oS/o×S
(α ∈ ∆)

(c2
D

)
· · ·

(cr
D

)
N(D)

1
2
−2sα .

Denoting by χD the Hecke character which maps the principal ideal generated by α
to

(
D
α

)
, we may write this

Z(s) =
∑
D

L

(
2s2 −

1

2
, χD

)
· · ·L

(
2sr −

1

2
, χD

)
N(D)

1
2
−2s1 .
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It is also possible to replace L
(
2s2 − 1

2
, χD

)
· · ·L

(
2sr − 1

2
, χD

)
in this expression by

L(2s− 1
2
, f, χD), where f is an automorphic form on GLr, with r = 1, 2 or 3. In this

case, they Weyl group Φ = A2, A3 andD4 is replaced by its subgroup, A2, B2 or G2.
These examples were considered in Bump, Friedberg and Hoffstein [10].

As we mentioned in the introduction, there is strong reason to believe that the
Weyl group multiple Dirichlet series (for arbitrary n and Φ) are Whittaker coefficients
of Eisenstein series on metaplectic covers of semisimple algebraic groups. (We will re-
turn to this point in a later paper.) But when n = 2, there may also be nonmetaplectic
Rankin-Selberg constructions. For example, applying the construction of Maass [19]
to an Eisenstein series of Klingen type and applying results of Mizumoto [20] one ob-
tains the B2 example; for the G2 example, one relies on an unpublished construction
of David Ginzburg involving SO7. Another “nonmetaplectic” context in which these
multiple Dirichlet series occur is the discovery by Venkatesh [23] that when n = 2
the Ar multiple Dirichlet series are related to periods of nonmetaplectic Eisenstein
series.

Returning to general n, Friedberg, Hoffstein and Lieman [14] have considered
multiple Dirichlet series with the heuristic form

Z(s, w) =
∑
D

L

(
2s− 1

2
, χD

)
N(D)

1
2
−2w,

where now χD(c) =
(

D
c

)
in terms of the n-th order symbol; these were applied to

mean values of L(s, χD). When n > 2 there are actually two distinct objects which
are interchanged by the functional equations, which form a nonabelian group of
order 32. There is convincing reason to believe that this multiple Dirichlet series is
a residue of the An multiple Dirichlet series, and this has been checked when n = 3
(see [3]).

Brubaker, Friedberg and Hoffstein [7] considered a multiple Dirichlet series with
the heuristic form ∑

D

L

(
2s− 1

2
, f ⊗ χD

)
N(D)

1
2
−2w

where n = 3 and f is an automorphic form on GL2. The group of functional equations
is of order 384. Although this is the same as the order of the classical Weyl group
of type B3, it is not the same group. Brubaker showed that the cusp form may be
replaced by an Eisenstein series, in which case one has a meromorphic function of
3 variables. This appears to be a residue of the E6 multiple Dirichlet series (with
n = 3).
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Chinta [12] made use of the A5 multiple Dirichlet series (with n = 2) in order to
study the distribution of central values of biquadratic zeta functions. We note that
Chinta’s example is outside the stable case.

Finally, we take this opportunity to point out that as noted in the introduction
to [5] the residues the A3 multiple Dirichlet series when n = 4 are clearly connected
with the conjecture of Patterson [21].
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