Weyl Group Multiple Dirichlet Series I

Benjamin Brubaker, Daniel Bump, Gautam Chinta,
Solomon Friedberg and Jeffrey Hoffstein

March 30, 2006

Given a root system ® of rank r and a global field F' containing the n-th roots of
unity, it is possible to define a Weyl group multiple Dirichlet series whose coefficients
are n-th order Gauss sums. It is a function of r complex variables, and it has
meromorphic continuation to all of C", with functional equations forming a group
isomorphic to the Weyl group of ®. Weyl group multiple Dirichlet series and their
residues unify many examples that have been studied previously in a case-by-case
basis, often with applications to analytic number theory. (Examples may be found in
the final section of the paper.)

We believe these Weyl group multiple Dirichlet series are fundamental objects.
The goal of this paper is to define these series for any such ® and F', and to indicate
how to study them. We will note the following points.

e The coefficients of the Weyl group multiple Dirichlet series are multiplicative,
but the multiplicativity is twisted, so the Dirichlet series is not an Euler prod-
uct.

e Due to the multiplicativity, description of the coefficients reduces to the case
where the parameters are powers of a single prime p. There are only finitely
many such coefficients (for given p).

e In the “stable case” where n is sufficiently large (depending on @), the number
of nonzero coefficients in the p-part is equal to the order of the Weyl group.
Indeed, these nonzero coefficients are parametrized in a natural way by the
Weyl group elements.

e The p-part coefficient parametrized by a Weyl group element w is a product of
[(w) Gauss sums, where [ is the length function on the Weyl group.



We note a curious similarity between this description and the coefficients of the
generalized theta series on the n-fold cover of GL(n) and GL(n — 1); these coeffi-
cients are determined in Kazhdan and Patterson [17] and discussed further in Patter-
son [21]. See Bump and Hoffstein [11] or Hoffstein [15] for a “classical” description
of these coefficients. The noted similarity means that the complete Mellin trans-
form of the theta function would be a multiple Dirichlet series resembling our A,
multiple Dirichlet series. There is no a priori reason that we are aware of for the
complete Mellin transform of the generalized theta series to have meromorphic con-
tinuation. For example if n = 4, the complete Mellin transform of an GL(4) cusp
form (nonmetaplectic) would have a meromorphic continuation only in the special
cases §; = Sp + S3 Or S3 = S1 + So, in which case it produces a product of L-functions
by Bump and Friedberg [9]. (If s1, so and s3 are in general position, meromorphic
continuation fails due to the Estermann phenomenon.) This observation raises quite
a few potentially interesting questions.

The Weyl group multiple Dirichlet series are expected to be Whittaker coefficients
of metaplectic Eisenstein series, though we will not prove that here; we will, however,
come back to it in a later paper. The claim that the Whittaker coefficients of
metaplectic Eisenstein series have such a simple structure appears to be new, and is
essentially global in nature, because the representations of the metaplectic covers of
semisimple groups do not in general have unique Whittaker models. In this paper we
will study the Weyl group multiple Dirichlet series without making use of Eisenstein
series on higher-rank metaplectic groups. However Eisenstein series on the n-fold
cover of SLy underlie the functional equations of the Kubota Dirichlet series that
are the basic building blocks in our construction. Our methods are those laid out in
Bump, Friedberg and Hoffstein [10], applying a theorem of Bochner [1] from several
complex variables to reduce everything directly to the case of Kubota’s Dirichlet
series. (The use of Bochner’s theorem would also be implicit in an approach based
on higher-rank Eisenstein series, in the reduction of the functional equations to rank
one; this type of argument goes back to Selberg [22]. But an approach based on
the theory of higher rank metaplectic Eisenstein series would be considerably more
difficult.)

We will begin our treatment with a heuristic formulation, in which important
aspects of the true situation are ignored to obtain some intuition. We will thus
gain heuristics that predict the (twisted) multiplicativity of the coefficients and the
group of automorphisms of C" comprising the group of functional equations; it is
isomorphic to the Weyl group of ®. Although we will not discuss it much in this
paper, the heuristic viewpoint is also useful for inferring facts about residues of Weyl
group multiple Dirichlet series.



Although the heuristic point of view is unrigorous, we will proceed to a completely
rigorous formulation. Our discussion will thus have three stages. The first stage is
the heuristic formulation. In the second stage, we will completely describe the p-
part of the “stable” Weyl group multiple Dirichlet series; this is accomplished in
Section 2. The third stage, completing the theory, requires careful bookkeeping with
Hilbert symbols. Stages 1 and 2 are carried out completely here; for the third stage,
we carry it out here for the Ay Weyl group multiple Dirichlet series, and for general
o in [5].

This work was supported by NSF FRG Grants DMS-0354662, DMS-0353964 and
DMS-0354534.

1 “Heuristic” Multiple Dirichlet Series

The paper of Brubaker and Bump [4] will be our general reference for most foun-
dational matters; particularly, the properties of Gauss sums, Hilbert symbols and
power residue symbols that we need are there. For root systems, see Bourbaki [2] or
Bump [8].

A root system is a finite subset ® of Euclidean space R" of nonzero vectors such
that if « € ¢, and if o, : R” — R" is the reflection in the hyperplane through the
origin perpendicular to the vector « then o,(®) = ®, and if a, B € ®, then §—0,(5)
is an integer multiple of . Since —a = o0,(«), these axioms imply that —a € ®.
The root system is called reduced if o and 2« are not both in ®, and it is called
wrreducible if it is not the union of two smaller root systems that span orthogonal
subspaces of R". The root system ® is called simply-laced if all roots have the same
length.

We choose a partition of ® into subsets ® and ®~ of positive and negative roots
such that for some hyperplane H through the origin, the roots in ®* all lie on one
side of H, and the roots in ®~ lie on the other side. A positive root a« € 7 is called
simple if it cannot be written as a sum of other positive roots.

Let @ be a reduced root system in R”, and let A denote the set of simple positive
roots. The Weyl group W of ® is the group generated by the o, such that a € .
It is also generated by the o, with o € A. Let

A={on 0}

be the set of simple positive roots, and denote 0; = 0,,. Then W has a presentation
consisting of the relations

ol =1,  (0i0y)7 ) =1,
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where, if 6 is the angle between the roots,

0 if «a, 8 are orthogonal,
1 ifg=2r

— 37
3 ifg==2x

Thus W is a Coxeter group.

Fix n > 1, and let F' be an algebraic number field containing the group u,, of n-th
roots of unity in C. We will also assume that —1 is an n-th power. It follows that
F' is totally complex. Let S be a finite set of places including all the infinite ones,
those dividing n, all those that are ramified over Q and enough others that the ring
og of S-integers is a principal ideal domain. We recall that og is the set of elements
a € F such that |a,|, < 1 for all places v of F' not in S. We will denote

Foo:HFv; Fﬁn:HFva FS:HF”U:FOOXFﬁIU

VESso VESfn vES

where S, is the set of archimedean places in S, and Sg, is the set of nonarchimedean
ones. We embed og in Fg along the diagonal. It is discrete and cocompact.
If v is a place of F', the Hilbert symbol is a map F x F — p,, denoted

¢, d— (¢,d),, c,d € F).

We will also denote
(C7 d) = H(C'U7 dU)’U'
vES

The symbol ( , ) is a skew-symmetric bilinear pairing on F§ whose properties are
discussed in Brubaker and Bump [4].

If ¢ and d are nonzero elements of og, let (%) denote the power residue symbol.
Its properties are discussed in Brubaker and Bump [4]. We mention that it is mul-
tiplicative in both ¢ and d, depends only on ¢ modulo d, and also depends only on
the ideal generated by d. Most important is the reciprocity law

(-9

[f0#£c€o0g,andt € Z let



where (%) is the power residue symbol and ¢ is a nontrivial additive character of
Fs whose conductor is precisely og; since og is a principal ideal domain, such a
character always exists. The properties of Gauss sums are summarized in Brubaker
and Bump [4]. If t = 1 we may simply denote g;(«, ¢) = g(«, ¢).

Let & be a reduced root system. For each «; we choose a complex variable
Sa; = S;. We will define a multiple Dirichlet series Zy(s) = Zy(s1,--- ,S,), which
will be a function of r complex variables. It will depend on an extra datum W that
we will eventually describe, but first we give a rough “heuristic” description of Zy.
The heuristic description will be incorrect but suitable for fixing ideas. In discussing
the heuristic form the datum W is not too important, and we suppress it from the
notation. It will be restored when we move past the heuristic form to a correct
definition of Zy.

In this Section we will make an assumption that is unrealistic but convenient
for heuristic purposes. It will be seen in our discussions that both Hilbert symbols
and power residues symbols appear; the power residue symbols are essential, but the
Hilbert symbols are only needed for bookkeeping purposes. A lot can be inferred by

ignoring them. We will therefore pretend that the symbol (c,d) is trivial, and that

<(CI> -
= c

Then the heuristic form of the Weyl group multiple Dirichlet series is

Zs) = > galea) [H (C—“)_T(am TT Neea) 2.

C
Ca € OS/0§ a?ﬁ ﬂ aEA
(€ A)

where the product is over pairs of simple roots a and (3, and notation is as follows.
Due to our assumption on reciprocity, it does not matter whether we take the pair
a, B or (3, a, but we consider these to be the same pair, so there are %r(r —1) factors
in the product. The Gauss sum is

g1(1,m) if a is a short root,
ga(m) =< go(1,m) if « is a long root and ¢ # Gs.
g3(1,m) if ais a long root and ® = Gy,
and (o, B) is defined by (1). The absolute norm N(¢,) is the cardinality of 0g/c,0s.
There is also a normalizing factor, N(s) = N(s1, -+ ,s,). We will describe it

more precisely later; for the time being, let us only state that it is a product of zeta
functions and Gamma functions. We denote the normalized Dirichlet series as

Z*(s) = N(s) Z(s).
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There are a couple of things that are wrong with this description. First, we have
made the unrealistic assumption of perfect reciprocity; we have written the sum as if
each term depends only on the ideal of ¢,, whereas what we have written will change
by a Hilbert symbol if ¢, is multiplied by a unit; and, most seriously, we have only
described the coefficient in the Dirichlet series in the very special case where the ¢,
are coprime.

Despite these defects, the heuristic Dirichlet series is useful for deducing proper-
ties of the corrected version Zy, which we will come to later. So we will draw what
conclusions we can from the heuristic form. The defects can all be fixed, as we will
eventually see.

We will make use of the functional equations of Kubota Dirichlet series, which
are the Dirichlet series formed with Gauss sums. Let

Dis,a)= Y glae) N ™.
0#ccog /o0

In writing this there is again an unrealistic assumption, since the summand is actually
not invariant under the action of units — but at the moment, we recall, we are
pretending that the Hilbert symbol is trivial, and accepting this fantasy g(a,ec) =
g(a,c) when € € 05. Let

D*(s,0) = Gu(5)2""Y (r(2ns — n + 1) D(s, ),
where
Gn(s) = (27{‘)_(”—1)(25_1)%

The exponent %[F : Q] is just the number of archimedean places of the totally
complex field F'. By the multiplication formula for the Gamma function,

n—1 .
G _ —(n—1)(2s—3) _—1/2+n(2s—1) _ J -
a(s) = (2m) 2 H r2s—1+:
7j=1
Then D* has a functional equation, due to Kubota, which says (essentially)
D*(s,a) = N(a)'"#*D*(1 — s, ). (3)

Once again, there are some problems to correct — the Dirichlet series D has not been
defined correctly, and the functional equation actually involves a finite scattering
matrix. See Section 3 (and [4]) for the correct definition and functional equation.
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More generally, let 0 <t € Z be given, and let

Di(s,a) = Z gi(a,c) N(e)™ .

0#€EOS/O§

We define

n

* — %[FY(M — T
Dj(s,a) = G(s) Cp(2ms —m +1)Di(s, o), m ged(n, t)

(4)
This value of m appears since g; is an m-th order Gauss sum.

The heuristic definition is sufficient to predict the variable changes for the func-
tional equations that Z will satisfy. It also predicts the normalizing factor of Z. We
illustrate these points with two examples, one simply-laced, the other not.

As a first example, consider the root system of Cartan type A,, whose Weyl group
is isomorphic to the symmetric group S3. There are two simple positive roots a; and
a2, and the root system looks like this:

Q2
[

o . [ o351

o o

The three positive roots are marked in black, the three negative ones in white.
The roots a; and oy make an angle of %’T These facts can also be read off from the
Dynkin diagram:

a1 [6%)
[
We see that
—1
c
Z(s1,82) = E 9(1,c1) g(1, ¢2) (—1) N(e1) 7 N(ez) 722 (5)
C2

C1,C2

Since |g(1,¢1)| = Nci/ ?| this series is absolutely convergent in the region
2 3
Ao =< (s1,52) € C*| re(sy),re(sg) > e
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Let us first consider the functional equation with respect to s;. As we will see,
this functional equation has the form

_ 81'_>1—817
01{32'_)514‘52—%. (6)

We have y
c
g(l,c1)<—1) = g(c2, c1),
Co
SO
Z(31,32) =
29(1702) [Zg(027cl)N(cl)281 N(Cg)7282 =

Z g(1,¢3) D(s1, ¢5) N(ep) 22,

Now it is expected that this expression has analytic continuation a larger region than
the original sum; indeed, this representation gives continuation to this region

1 3 1 7
A1 = {(81,82) S CQ| re(SQ),re (81 + S9 — 5) > Z’re (81 1 28y — §) > Z_l}

1
2

S1 =

Ao A,

—~
L[]
L[]

S~—

—
N
N

~—



In this figure, illustrating Ay and A;, we are representing the complex pair (s1, s2)
by its real part (re(s;),re(ss2)). We have tilted the s, axis so that oy is a rigid motion;

it is the reflection in the marked line s; = % The region A; is the convex hull of
A() U 0'1A0.
There is, similarly, a functional equation

1

gy — J SLTT SIS =g, (7)

) =
52'—>1_827

which is the reflection in the other marked line sy = % This gives analytic continu-
ation to the region

1 3 1 7
Ay = {(51,52) € C?| re(sy),re (51 + 89 — 5) > 1T (251 + 89 — 5) > Z_l} (8)

Together the transformations o; and oy generate the A; Weyl group, isomorphic to
the symmetric group S3. The analytic continuation to all (sq, s2) now follows by an
argument based on Bochner’s Theorem. See Theorem 2 below.

We can now prescribe the normalizing factor N(sy, s2). It is

G(51) Guls2) G (51 52— %)

XCp(2ns; —n+ 1) (p(2nsy — n + 1) (p(2ns; + 2nsy — 2n + 1).
With this factor we have
Z*(Sl, 82) =

1
G, (s2) G, (31 + 89 — 5) Cr(2nss —n+ 1) (p(2ns; + 2nss — 2n + 1) x

S gL ca) D (s1, ¢2) N(ea) 2.
c2
Now the functional equation (6) is perfect — the two factors

1
G, (s2)(r(2nss —n + 1) and G, (31 + 89 — 5) (r(2nsy + 2nsy — 2n 4+ 1)
are interchanged, and the third factor has been absorbed into D*. Note that in the

functional equation (3) the series D*(sy, cz) is related to N(cg)!™21D*(1 — s1, ¢a), SO
the Dirichlet series is transformed into

> " g(1e2) D*(1 = 51, ¢2) N(ep)' 721722,
Cc2
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from which we get (6).
Next let us consider an example that is not simply laced. We consider the By
root system, which looks like this:

P
[ ] .
(6%)
) )
(o} [ 1631
o o
o

In this example, we have the heuristic series

C2

—2
c
Z (81, 82) ZQQ 1) g1(e2) <—1> N(cl)’%1 N(@)’QSQ.

C1,C2

We can write

N(02>7282 =

—2s
Z(s1,82) E g1(c2) [E g2(ca2, c1)N !

Z g1(c2) Da(s1, ca) N(CQ>_2527

Cc2

which gives us the functional equation

{Sl'—>1_817

1
Sg > 51 + 82 — 3.

More interestingly, if we write



from which we deduce the functional equation

S — 81+ 251 — 1,
S9g —— 1 — s9.

The two functional equations generate a group isomorphic to the Weyl group of @,
which is of order 8.

In this example, there is a difference between the case where n is even and the
case where n is odd. Although the group of functional equations is independent of
the parity of n, the normalizing factor is dependent. This is because of (4). When
t = 2, the factor m = n/ged(2,n) is needed for the factor Dy coming from the long
root. The normalizing factor is

1
G, (51)Cr(2nsy —n+ 1) Gp(s1 + 52 — §)CF(27131 —2n+1)
G (52)Cr(2msy —m + 1) G, (251 + s2 — 1)(p(4dmsy + 2mss — 2m + 1),

and the meaning of m is dependent on the parity of n.

Although the “heuristic” Dirichlet series is too unrealistic to be a perfect guide,
we have just seen that it can predict the group of functional equations. It can also
predict the multiplicativity of the coefficients, as we will now consider.

Returning to the A, example to explain this point, the heuristic form (5) is a
stand-in for an actual Dirichlet series

Zy(s1,82) = Z H(cy,c2) Uley, o) N(ey) 2 N(ey) 2. 9)

C1,C2

The factor ¥ can be ignored for the time being; in this section we write

Z(s1,82) = »  H(er,c2) N(er) > N(cp) ™2,

C1,C2

The coefficients H(c1, co) will have a “twisted” multiplicativity. True multiplicativity
would be the statement that if ged(cico, jch) = 1 then

H(cid), cacy) = H(ey,e0) H(c, dy).

This is not true. Instead, we have

/ / —1 / —1
/ AN ;o 1 G Co Co C1 G
H(cid), cacy) = H(cy, o) H(c, ) <_c’1) (_01) (_c’2> <_02) (_0’2) (—02> . (10)
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Of course we are currently pretending that all Hilbert symbols are trivial so that

(—,) = (C—C/), one might therefore write the right-hand side as

R I N A
H H Y[ 2 2 ot i ’
e () () (7) (G

We have written (10) without this “simplification” since as written it is correctly
stated, even without the simplifying assumption that all Hilbert symbols are trivial.

The multiplicativity (10) can be checked when all four parameters ¢y, co, ¢} and
¢, are mutually coprime using the fact that

/ c d ’ . ’ .
g(m,cc') = <—> — | g(m,c) g(m,c), if ¢, ¢’ are coprime. (11)

c c

In this case we have specified

H(er, ) = g(1,¢1) g(1, ¢2) (ﬁ>_1 .

C2

The most serious defect in the heuristic form of the multiple Dirichlet series is
that we have only specified H(cy,cy) when ¢, ¢, ¢§ and ¢, are pairwise coprime.
However we have made some progress towards giving the general recipe, since we
have deduced the multiplicativity (10). It is a small leap to guess that this formula
is correct assuming only that ged(cies, i) = 1. Given (10), we are reduced to
specifying H(cy, c2) when ¢; and ¢y are powers of the same prime p. As we will see in
the following section, this question turns out to have a simple and beautiful answer
if n is sufficiently large.

2 The Stable Case

As we have explained in Section 1, the “heuristic” formula for the Dirichlet series is
sufficient to deduce the multiplicativity of the terms, which reduces their specification
to that of the p-part, where p is a prime of 0g. By this, we mean the coefficients

H(pkla"' apkr)' (12)

We will specify these in this section.
As in Section 1, no Hilbert symbols will appear in this section. How the defects
of the “heuristic” Dirichlet series are to be corrected has yet to be revealed, and will

12



be taken up in the next section. But we are now outside the heuristic realm, and the
formulas that we give for the p-part are exactly correct. The fact that no symbols
appear in this section, yet the statements will require no further revision may appear
surprising — see Remark 1 below for the explanation of this paradox.

There is an important caveat: we will give exact formulas for the terms (12), but
these are only correct if n is sufficiently large. The meaning of “sufficiently large”
is easiest to explain if ® is simply laced. In this case, let a be the longest positive
root, and write & = ), d;o; where, we recall, the «; are the simple positive roots.
In this case, if n > ZZ d; then the formulas we give will be correct. We call this the
stable case. (If ® is not simply laced, see Brubaker, Bump and Friedberg [5] for the
precise condition that n must satisfy for stability.)

In the unstable case (where n is small) the multiple Dirichlet series should exist
and the nonzero coefficients that we describe will be present. However there will be
other nonzero coefficients as well. We do not yet have a precise description of the
terms (12) that is valid in the unstable case when ® is an arbitrary root system.
However a conjectural statement when ® = A, may be found in Brubaker, Bump,
Friedberg and Hoffstein [6]. This conjectural description describes the coefficients as
sums of products of Gauss sums indexed by Gelfand-Tsetlin patterns. It is proved
correct when r = 2, or n = 1, and is consistent with results of Chinta [12] that
describe the Weyl group multiple Dirichlet series for A, when r < 5 and n = 2.

Define the support of H to be

Supp(H) = {(kla T 7k7‘) | H<pk17 e 7ka) 7& 0}

It will be seen that this set, which does not depend on p, is finite, and in the stable
case, is in bijection with the elements of the Weyl group.

Let ]
p:§ ZO[.

acdt

If w € W, the Weyl group, we have

p—uwip)= Y. o«

acdt
w i a) € &~

These |WW| points form a figure that is congruent to supp(H). Before we give the
general presecription, let us illustrate this point with a couple of examples.

First, if ® is of type As, the points p — w(p) are marked by stars in the following
figure:

13



o

%

o o

The black dots are the positive roots; two of them, at the simple roots oy and as,
are obscured by stars. The white dots are the negative roots. It will be noted that
the stars form a hexagon. Here, for comparison, are the nonzero values of H (p*t, p*?)
for the Ay Weyl group multiple Dirichlet series:

(K1, k2) H(p™, p™)

(0,0) 1

(1’0) gl(lvp)

(0,1) 91(1,p) (13)
(1,2) | a1(1,p)gr(p,p*)

(2,1) | a1(L,p)gr(p,p*)

(27 2) 91(1719)291(177192)

Thus
supp(H) = {(0,0),(1,0),(0,1),(1,2),(2,1),(2,2)}
is a hexagon — exactly the shape of the figure of starred points p — w(p). More
precisely, the possible values of kja; + ko are exactly the set of p — w(p).

As a second example, which is not simply-laced, suppose that ® is of type Bs.
The points p — w(p) are the starred vertices in the following diagram.

14



* *
p
(Y o
% ° *
o * K1
o o
o

Again, the roots are labeled by dots (black for the positive roots, white for the
negative ones) and the values of p — w(p) are marked by stars. The nonzero values
of H(p*t,p*) are given by the following table:

ky
0 1 2 3
0 ]- 92(17]9)
1| gi(1,p) 91(1,p)g2(p, p?)
L2
2
1,p)g2(p, p?)
3 1’ 27 3 92( ) 9
92(1,9)g1(p", ") g1 (0%, p?)
4 g1(1,p)g2(p, p?) 92(1,p)g1(1,p)
xg1(p?, p?) X g2(p, p*) g1 (P, p°)
Thus

supp(H) = {(0,0),(1,0),(0,1),(2,1),(1,3),(3,3),(2,4), (3,4)}

is precisely the set of (ki, ko) such that kya; + kaay can be expressed as p — w(p) for
some w € W.

We will now describe the coefficients H(p*t,--- | p*7) in the stable case. If a € ®,
we write
d(a) = Z ¢;, where a = Z Cioy;.
i a;EA
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Then we write
H(pklv e >ka) = H ga(pd(a)—l’pd(a))

if there exists a w € W such that
Zki& =p— ?U(p),
i=1

while H(p*,--- p*) = 0 if no such w exists.
Returning to the case ® = By, we embed the root system into R? so that the
simple roots and coroots are

11
) = (170), Qg = (—5, 5) .

The following table shows how the H(ki, ko) are to be computed.

w(p) | p—w(p) | (k,ks) | a€® w(a)e P [T ga(p™~1, p™))
(3.1) 0 (0,0) none 1
(L%) <_%7%) (Oal) Qg gl(l>p)
<_%71) (LO) (LO) a1 92(1,]7)
(-13) | G35 | @21 g, 01 + 91(1,p) g2(p, p°)
2
-1 | 0D | @0 | avatanluta | 0RERD
1 9
(17_%) (_%73) (173) 04172041 + Qg 92(17p)91(p27p3)
(—%7 —1) (1,2) (3,4) | a1, 0,00 + @z, 20q + g;qigl’g))gll((;ﬁpgfs)
L, p)
—1,-h) | (33 3.3 Lo+ . 20 + 92(1,
( )| (Gz) | B3) | anaita2ata 92(p, p*) 91 (p*, P*)

3 The A, Weyl group multiple Dirichlet series

The Weyl group multiple Dirichlet series are, at this point of the paper, only partly
defined. Coefficients H(p*,--- ,p*) have been defined, but other aspects such as
the multiplicativity have only been discussed under the unrealistic assumption that
the Hilbert symbols can be ignored. We will give a completely rigorous discussion
now of the case where ® = A,, as an introduction to the more general case which
will be treated in [5].
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We begin by recalling the functional equations of Kubota Dirichlet series. The
results of Kubota [18] were extended by Eckhardt and Patterson [13] and by Brubaker
and Bump [4]. We consider [4] to be a companion piece and assume that the reader
has it handy for reference.

Let F' be an algebraic number field. As in the introduction we assume that F
contains u, and that —1 is an n-th power in F', and other notations such as S, og,
¥, etc. will be as in the introduction.

We say a subgroup T of F¢ is isotropic if the Hilbert symbol (e,d) = 1 for all
g,0 € Y. In particular, the group Q = o3 (FJ)" is maximal isotropic. Let M(2) be
the finite-dimensional vector space of functions ¥ on Fy; that satisfy

U(ec) = (g,¢) ¥(e), (14)

when ¢ € Q. Note that if ¢ is sufficiently close to the identity in Fg it is an n-
th power hence lies in €2, so such a function is locally constant. The dimension
of M(Q) is equal to the cardinality of F¢ /€2, which is finite. See Brubaker and
Bump [4], Lemma 3.

If U e M(2), define

D(s,,a)= > gla,c)¥(c)N(c)™>.

0#c€og /o0

Here N(c) = |c| is the order of 0g/cog. The term g(«,c) ¥(c) N(c)™* is independent
of the choice of representative ¢ modulo 05 by (14) and the fact that if ¢ € 0§ we
have

gla,ec) = (¢,e) g(a, ¢). (15)
(See Brubaker and Bump [4] for details.) The normalized Kubota Dirichlet series is

D*(5,V, ) = Gn(8)2F5YU (p(2ns — n+ 1) D(s, ¥, ). (16)

If v € Sk, let g, denote the cardinality of the residue class field o,/p,, where o, is
the local ring in F, and p, is its prime ideal. By an S-Dirichlet polynomial we mean
a polynomial in ¢, % as v runs through the finite number of places in Sg,. Also if
U e M(Q) and n € FZ denote

Uy(c) = (n,0) T(c™'n). (17)

One may easily check that U, is in M().
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Theorem 1 Let UV € M(Q2), and let o € os. Then D*(s,¥,«) has meromorphic
continuation to all s, analytic except possibly at s = % + %, where it might have

simple poles. There exist S-Dirichlet polynomials P,(s) depending only on the image
of nin F§/(FG)™ such that

D*(s,W,a)= Y N(a)' *Py(s)D*(1—5,7,,0). (18)
neFg /(Fg)m
This is proved in Brubaker and Bump [4]; very similar results are in Eckhardt
and Patterson [13].
Let M(9Q?) be the finite-dimensional vector space of functions ¥ : Fy, X Fg, — C
such that when ¢; and &5 are in )

111(8161, 6202) = (81, Cl) (81_182, Cg) \I/(cl, 62). (19)

The dimension of M(Q?) is the square of the cardinality of F& /€, by adapting the
proof of Brubaker and Bump [4], Lemma 3.

We will define a function H(cy,c2) on 0§ X of which satisfies the “twisted mul-
tiplicativity”

c c Co c e\ e\
oy () () (2) () () (0)”

It is understood that H(e1,e2) = 1 when €; and &, are units, so using the special

case -
(—) = (¢,e) when ¢ € 03
c

of the reciprocity law, (20) includes the rule
H(€1Cl, 8262) = H(Cl, CQ)(Cl, €1)(C2, 62)(02, 51)71. (21)

This means that if ¥ € M(Q?) the function H(cy,c2) ¥(cy, ca) depends only on the
values of ¢; and ¢y in 0g/0%, and so the multiple Dirichlet series Zy defined by (9)
can be written down.

Specification of a function H satisfying (20) is clearly reduced to the specification
of H(p*,p*?) for primes p of og, and these are specified by (13).

Remark 1 It may be checked using (21) and (15) that if we change p to ¢ = ep,
where ¢ is a unit, then this rule is unchanged, namely

H(1,1) = 1,
H(1,q) = H(q,1) = g(1,q),
H(q,q") = H(¢% q) = 9(1,9)9(q,¢*),

H(*q%) = 9(1,9)*9(q,4%)

18



No Hilbert symbols appear in these formulae! Thus it does not matter what rep-
resentatives we chose for the prime ideals — the definition of H is invariant. This
observation explains the paradox noted at the beginning of Section 2.

Now let A be the ring of (Dirichlet) polynomials in ¢X?*', g2 where v runs

through the finite set Sg, of places. Let MM = A® M(Q?). We may regard elements
of M as functions ¥ : C? x (FZ)? — C such that for all (sq, s2) € C? the function

(c1,c2) — U(sy, S2,¢1,Co)
is in M(Q?), while for all (¢, ) € (F&)?, the function
(s1,52) —> U(sy, S9,c1,Ca)
is in A. As a notational point, we will sometimes use the notation
U,(eq, o) = W(sy, 89, €1, C2), s =(s1,8) € C2. (22)

We identify M () with its image 1 ® M (Q2) in 9%; this just consists of the W, that
are independent of s € C2.
We define two operators oy and oy on C? by (6) and (7). They satisfy the braid
relation
010901 = 090109 (23)

as well as
o? =1, o3 = 1. (24)

The relations (23) and (24) are a presentation of the symmetric group S3. We will
denote this transformation group of C2 by W.
We define operators o and o5 on 9 by

(01W,)(c1, e2) = (019)(51, 82, €1, C2) =

Z (n,c163") Pz, (1) <1—51,81+82—— n 01762)

neFg [(Fg )"
and
(02Ws)(c1, o) = (02W) (51, 82, €1, C2) =
Z (n,¢2) P, z2,(s2) V¥ (31 + 59 — %, 1 — s9,c1, n—lcQ) .

nerg /(Fgm
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Proposition 1 If ¥ € M, then o1V and ooV are in IN.

Proof Let ¢; and g5 € Q. We have

(01\1’)(51,32,510175202) =

- r -
Z (T},€1€2 10102 1) P6261_26261_277(51>\I, (1 — 81,81 + S2 — 5, n 1€1C1, 8202) .
neFg /(Fg)n

Making the variable change n —— £, '¢2n and using the fact that ¥ € 9, this equals

1
—1_2 -1, —1 |
E (e5 €M, €165 €165 )P02c;2,7(31)‘1’ (1 — 51,81 + 82 — 501 €281 (1,820 | =

neEFg /(Fg)m

(e3'el, 165 ) Z (77a5152_10102_1)(5251_1777_101)(51702)P02c;2n(81)

neEFg /(Fg)m
x W (1 — 51,51 + S92 — %,n_lcl7c2> =
(e1,¢1) (2671, c2)(01W) (51, 89, €1, C2),
proving that o1 ¥ € 9N; the case of ooV is similar. O

Let 20 be the group of automorphisms of 9t generated by o7 and o5. This will
turn out to be the group of functional equations of the multiple Dirichlet series.
Clearly there is a homomorphism 2J — W, where we recall that W =2 Sj is the
group of transformations of C? generated by o and o5. It is an interesting question
to determine the kernel of this homomorphism 20 — W. One might hope that this
kernel is finite and perhaps trivial if 2.

Theorem 2 Let U, € M. The function Zy, (s1,52) defined by (9) is convergent in
the region Ay defined by re(s1),re(ss) > 3. It has meromorphic continuation to all s,
and so; it 1s analytic except where s1, sy or % — 51 — So equals % + %, and it satisfies

Zow,(05) = Zy,(s) (25)

for all o € 2.

This is a special case of the Theorem 5.9 in [5].
Proof The function ¥ is bounded as a function of ¢; and ¢y because Q? has finite
index in (FJ)? by (19). To prove convergence on Aq it is sufficient to show that
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(with re(sy),re(sy) >

=~

+¢)

o > Z|H(Cl,02)N<Cl>*251N(02)7252’
> T 1HGN pb) IN(p)—2 ik —e,

P kik2

It is easy to check that for the 5 possible (ki, ko) # (0,0) such that H(p*, p*2) #£ 0
we have ,
H(pM, p*)N(p)2kithai=te — O(Np~'7%).

Thus s

S H () [N(p) 3 — 14 0 )

K1,k
and the convergence follows by comparison with the Dedekind zeta function.

Using standard bounds for the Gauss sums, we have

[H (c1, c2) N(er) 2 N(e2) 72| < N(cp) 220N () 27270

It follows that (9) is convergent in A,.
If (c1,¢2) = (1p*, 1op™?) where p t~; and k; < 2 we say ¢, is ¢;-reduced at p if
(k1, k) occur in the following table:

ki | Fo
00
1[0
2|1

We say that ¢y is ¢q-reduced if it is ¢i-reduced at p for all p.

Lemma 1 We have H(ci,c3) = 0 unless ¢1 is cubefree and co is a multiple of a
cy-reduced integer. If ¢1 is cubefree and ¢y is a cq-reduced integer, then H(cy,cq) # 0.

Proof This is clear from the definition of H. O
Lemma 2 Suppose that ¢y is cube-free and that cs is ci-reduced. Then cy = 6102_2 S
os and for every a € 0g we have

H(ey, ac)

m(a, c2) = g(co, @). (26)
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Proof Tt is clear from the definition of ¢;-reduced that ¢ divides ¢;. Since ¢; and
¢y are fixed, let h(a) denote the expression on the left-hand side of (26). We first
check that the multiplicativity of h matches that of a Gauss sum. Let («, ) = 1.
Factor ¢; = 717 and ¢y = 74 where (ay172, 8v175) = 1. Then expanding

hap)  Hmy eB1215)H(nmr1205) — (af, )
h(a)h(p) H(nvis aveys) H(nvs Br2s) (@, ) (B, ¢2)

DEOEEE @
@) (@) @)
O EE) () )
MERE

Comparing with (11), it is sufficient to check (26) when o = p". We factor ¢; = y1p**,
¢y = 72p™ where p{ 5. Then h(p”) equals

H (yip*t, yoph™T)
H (yipht, yapk2)

() () () () ) (2) oo
(B E) ) wems]

-G () 6)

Since (p,p) =1, (p",c2) = (p",¥2), so by the reciprocity law

_ -1 ,
h(p") = (72 271) H(pk, p*+7)
P H(ph, p™)
Table (13) shows that for k; and ky given (such that p*2 is p*-reduced) there are
exactly two values of r for which h(p") is nonzero: they are r = 0 and r = ky — 2ky +
1 = ord,(co) + 1.

)
=

—_

=~
N~

B
By
(8]

N
=

2|2 2
N— —
/\/—\/\

2R RIR 2R

—_

2
=

X
7~ N 7N 7N 7N
/\/‘\/T\/\
=

I
A/~
el
~—

(pr’ C2)
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If » =0, then h(1) = 1. We may therefore assume that r = ord,(c) + 1. In this

case, we have
H(pkl , pk2+7")

H (phr, pk2)

as may be seen from the following table.

ky | ko | r=ord,(co) + 1| H(p™,p**")/H(p", p*2)

00 1 9(1,p)

1[0 2 9(p, p*)

21 1 9(1,p)
We have .

_2 -
T T2 r— T -2, r— T

h@)=<i?i) 9@t p") = gty ).
We are done since with our assumption that r = ord,(co) +1 we have ;5 Zp’“_1 = ¢p.
This proves the Lemma. U

For ¢; and ¢, given, if ¥ € M(Q?), or more generally if U = U, € 9 let
U2 (q) = W(ey, acy) (o, cp)

Lemma 3 The function U2 € M(1).
Proof This is easily checked using (19). 0

Lemma 4 We have

Zy(s1,82) = Z Ne; 2% N02_232H(cl, o) D(s9, U2 cic5?). (27)
0#c1,c2 € Og\ﬂs

c1 cube-free
co c1-reduced

Proof By Lemma 1, we may rewrite (9) by first summing over ¢; cubefree, then
replacing ¢y by cods, where ¢y is a fixed generator of the ideal of ¢;-reduced elements
of 0g and dy is summed over og/05. Then invoking (26) the summation over d,
produces D(sy, U2 ¢ ¢, ?), and the statement follows. O

Lemma 5 We have, for ¥ € M

D* (59, U2 c1c5%) = N(eic;?) 722 D*(1 — s, (020)  c1¢5?). (28)
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Proof By Theorem 1 we have
D*(Sg, porez, 0102—2) _ Z N(clcg )1 232P6102 77< )D*(l — S, @;1,027 01652),
neFg [(Fg)"
where with our definitions
W2 (d) = (i, )= (dMn~") = (n,d) (d, o) Wler, ™1~ les).

(We are suppressing the dependence of ¥ on s from the notation.) Now we take s,
to have large negative real part so that the right-hand side can be expanded out as
a Dirichlet series. Thus D*(sq, U2 c1c5 %) equals

> N(?)' 2P, o (59) D (1 — s, U2 01057) =
neFg /(Fg)"
> NG 2P, 2 ()
neFg /(FG)"

/
Z gleicy®, d)Nd**72(n,d c5)(d, ¢2) U(cr, d ™' le) =

0#dcog/og
Z Z N(clcg )1 282Pclc 2d*2n(52)

0#deos/og nEFG /(Fg )"
g(cicy?, d) Nd*272(d2n, d co)(d, co) ¥(cy, dn ey) =
Z Z N(eic;*)'™ 282Pclc 24-2,(52)
0#deog /oy neFg /(F5)™
g(cicy?, d)Nd*2 2(n, d cy)(d, co) " W(cy, p tdey) =
Z N(e1cy2) 722 (a,0) (81, 89, ¢1, dca) gleicy ?, d) Nd*2 7% (d, cp) ™ =
0#d€cog/og
N(c1c;2) 722 D*(1 — s9, (02W)2, ¢1652),

where we have made a variable change n — d~2n and used the fact that (d,d) = 1.
This completes the proof of the Lemma. O

Lemma 6 The function Z}(s1,s2) has meromorphic continuation to the region Ay
defined by (8), and satisfies the functional equation

Zoyu(028) = Zy(s).

It is analytic except where sy = % + %
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Proof The expression (27) gives the continuation to the region €25. The functional
equation follows by combining (27) with (28); note that of the normalizing factor
of Z,

G, (s2) (r(2nsy —n+ 1)

is needed to normalize D, while the remaining parts are interchanged by the trans-
formation (7). O

There is of course also a second functional equation corresponding to (6). This
is similar and we omit details of it. We note that the Hilbert symbols that appear
look slightly different since we made an arbitrary choice in writing (20) by choosing
the last two symbols to be

PRIV ANS N e\
<—,1> (—1) instead of (—2> (—,2> )
Cy C2 C1 G

Thus merely interchanging the two coordinates does not quite preserve the space
M(Q?). Instead, if ¥ € M(Q?) then so is ¥ defined by

U'(ey, ) = (c2,01)¥(e2, 1),

and conjugating o, by this involution of M(Q?) (while interchanging the roles of s;
and s9) gives the transformation oy of 9. We have, as in Lemma 6 the functional
equation

Z; g(o1s) = Zy(s). (29)

(e

We may now prove the global meromorphic continuation of Z*(s). First we obtain
continuation of Zy to the region (with A; and A, as in Section 1)

A1 U A2 U UI_IAQ.
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A1 UAQUUl_lAQ

On As, we have already noted the analytic continuation in Lemma 6, and the
continuation to Ay is given by the same method, and on the region A; we have
(29). Of course, the two continuations agree on the overlap A; N Ay = Ag. Now the
continuation to o1As is obtained by the formula

Z&/(Ul_ls) = Z;lll(s)a s € Ay, (30)

and we must check that the continuations agree on the overlap A;NAsNoT Ay = o1 Ag;
indeed, if s = 018" where s’ € Ay then the right-hand side of (30) equals

Zy(oy's) = Z3,4(s) = Z5,4(015) = Zy(5),

where at the last step we have used (29). This is the same as the left-hand side
of (30). In conclusion, we have obtained the analytic continuation of Zy as a well-
defined function on Ay UAyUoy 'Ay. This region is a simply connected tube domain
whose convex hull is all of C2, and so the meromorphic continuation to C? follows
from Bochner’s Tube Domain Theorem (Bochner [1] or Hormander [16], Theorem
2.5.10). Note that Bochner’s theorem applies to analytic functions; so we apply it to
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the function

1 1 1 1 1 1

Ty T )\ T T )\ T T ) (2T Ty,
1 1

(1—81—82—%)(1—81—82+%)ZW(8>.

Now when ¢ = 07 or o9, (25) is known when s € Ay, and by analytic continuation
it is therefore true for all s € C2. It follows that it is true for the group 20 they
generate.

This completes the proof of Theorem 2. O

4 Examples

In this section, we will discuss some examples. We return to the “heuristic” viewpoint
of Section 1. The heuristic point of view is best for quickly grasping the relationships
between various objects, before making those relationships rigorous along the lines
of Section 3.

In the case where n = 2, there is little harm in replacing the quadratic Gauss
sum g(a, ¢) by simply (2) Ne™'/? in the definition of Z(s). (For simplicity, let us
restrict ourselves to the simply-laced case.) Thus we obtain the heuristic form

2= ) 11 (Z—;) TT Neea)s 2.

0#cq € US/0>S< a, 3 not orthogonal a€EA
(a € A)

In the three cases where ® = Ay, A3 and Dy, the Dynkin diagram of ® is a “star”
with one vertex adjacent to all others; let us call the corresponding root «;, and
the others aw, -+, a,, where r = 2,3 or 4 is the rank. Then, denoting D = ¢,, and
Ci = Co, (1=2,-++,1) we have

Z(s) = Z (%) .. (%) N(D)%_QSQ,
D,c; € 05/0%

(e A)

Denoting by xp the Hecke character which maps the principal ideal generated by «
to (%), we may write this

1 1 )
Z(S>:ZL(2S2_§7XD> ...L(QST_§7XD> N(D>57231.
D
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It is also possible to replace L (232 — %, XD) ceo L (ZST — %, XD) in this expression by
L(2s— %, fyxp), where f is an automorphic form on GL,, with » = 1,2 or 3. In this
case, they Weyl group ® = A,, Az and D, is replaced by its subgroup, As, By or Gs.
These examples were considered in Bump, Friedberg and Hoffstein [10].

As we mentioned in the introduction, there is strong reason to believe that the
Weyl group multiple Dirichlet series (for arbitrary n and ®) are Whittaker coefficients
of Eisenstein series on metaplectic covers of semisimple algebraic groups. (We will re-
turn to this point in a later paper.) But when n = 2, there may also be nonmetaplectic
Rankin-Selberg constructions. For example, applying the construction of Maass [19]
to an Eisenstein series of Klingen type and applying results of Mizumoto [20] one ob-
tains the By example; for the G5 example, one relies on an unpublished construction
of David Ginzburg involving SO;. Another “nonmetaplectic” context in which these
multiple Dirichlet series occur is the discovery by Venkatesh [23] that when n = 2
the A, multiple Dirichlet series are related to periods of nonmetaplectic Eisenstein
series.

Returning to general n, Friedberg, Hoffstein and Lieman [14] have considered
multiple Dirichlet series with the heuristic form

Z(s,w) = ED:L (28 - %»@) N(D)z 2,

where now xp(c) = (%) in terms of the n-th order symbol; these were applied to
mean values of L(s, xp). When n > 2 there are actually two distinct objects which
are interchanged by the functional equations, which form a nonabelian group of
order 32. There is convincing reason to believe that this multiple Dirichlet series is
a residue of the A, multiple Dirichlet series, and this has been checked when n = 3
(see [3]).

Brubaker, Friedberg and Hoffstein [7] considered a multiple Dirichlet series with

the heuristic form |
L (23 -5f® XD) N(D)z~2v
D

where n = 3 and f is an automorphic form on GL,. The group of functional equations
is of order 384. Although this is the same as the order of the classical Weyl group
of type Bs, it is not the same group. Brubaker showed that the cusp form may be
replaced by an Eisenstein series, in which case one has a meromorphic function of
3 variables. This appears to be a residue of the Fg multiple Dirichlet series (with
n =3).
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Chinta [12] made use of the A5 multiple Dirichlet series (with n = 2) in order to
study the distribution of central values of biquadratic zeta functions. We note that
Chinta’s example is outside the stable case.

Finally, we take this opportunity to point out that as noted in the introduction
to [5] the residues the A3 multiple Dirichlet series when n = 4 are clearly connected
with the conjecture of Patterson [21].
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