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GAUTAM CHINTA AND OMER OFFEN

Abstract. Let E be an imaginary quadratic extension of Q of
class number one. We examine certain representation numbers as-
sociated to Hermitian forms over E, which involve counting integral
points on flag varieties.

1. Introduction

The study of representation numbers of integral quadratic and Her-
mitian forms is a topic of classical interest. For example, an identity of
Jacobi says that the number of ways to write a positive integer n as a
sum of four integer squares is equal to 8

∑
d where the sum is over all

divisors of n which are not divisible by 4. This result and many related
results on representation numbers of quaternary quadratic forms were
reinterpreted by Elstrodt, Grunewald and Mennicke [EGM87] as re-
sults about representation numbers of binary Hermitian forms over an
imaginary quadratic number field E with ring of integers O. They then
related these to weighted sums of point evaluations of Eisenstein series
for the group PSL2(O) acting on hyperbolic 3-space. This weighted
sum can be interpreted adèlically as a period integral of the Eisenstein
series over a unitary group.

More recently, formulas for unitary periods of Eisenstein series for
the group GLn(E) have been obtained by Lapid-Rogawski [LR00] (for
n = 3) and [Off] (for general n). As in the work of [EGM87], these
formulas equate the period integral with a finite sum of Euler prod-
ucts. We remark however that the local terms in [EGM87] are local
densities that they compute explicitly at all places. Formulas for the
same local densities were obtained by Y. Hironaka [Hir89]. Hironaka
generalized the computation of local densities in a series of papers
[Hir88b, Hir99, Hir98] and finally obtained a general formula for local
densities of Hermitian forms in [Hir00]. Though explicit, the formula
is rather complicated. In [Hir88a], Hironaka introduced spherical func-
tions on the space of Hermitian matrices associated to a quadratic

Date: August 7, 2006.
1



2 GAUTAM CHINTA AND OMER OFFEN

extension of p-adic fields. She obtained a formula relating the spher-
ical functions to local densities [Hir88a, §2 Theorem]. Although the
formula indicates a strong relation between spherical functions and lo-
cal densities, it is not yet clear in general how explicit formulas for
the latter can provide explicit formulas for the first. The local data
that appears in the formula of [LR00, Off] for the unitary period of an
Eisenstein series is in terms of Hironaka’s spherical functions, explicit
formulas for which are available in [Hir99, Theorem 1] for the case of
an unramifed quadratic extension. For the case of a ramified exten-
sion, explicit formulas are only available if n = 2. Thus, in contrast
to [EGM87], the local terms in the results for n > 2 [LR00, Off] are
explicit only outside a finite set of primes.

The purpose of the current work is to give an arithmetic applica-
tion of the formula for the unitary period. For simplicity, we restrict
our attention to an imaginary quadratic field E of class number one.
We express the unitary period of an Eisenstein series induced from
a standard parabolic subgroup P of G = GLn as a Dirichlet series
whose coefficients are certain representation numbers related to count-
ing points on the (partial) flag variety P\G. Special cases reduce to
more familiar representation numbers. For example, generalizing the
setting of [EGM87], consider the Eisenstein series EP associated to the
parabolic P of type (n − 1, 1) of G. Let On

prim be the set of column
vectors t(v1, . . . , vn) ∈ On such that the ideal generated by the vi’s
is O. Let g ∈ GLn(C) be such that the associated positive definite
Hermitian form

Q : v 7→ tv̄gtḡv

is integral. The Eisenstein series EP (g; ·) can be expressed as a Dirichlet
series whose m-th coefficient is

#{v ∈ On
prim : Q(v) = m},

the number of ways to represent m by the Hermitian form Q with
primitive integral vectors.

For a second example, let P be the parabolic of type (1, n − 2, 1).
Then EP (g; ·) is a Dirichlet series in two complex variables whose
(m1,m2) coefficient is

(1.1) #{v ∈ On
prim, w ∈ |det g|2 g−1(tḡ)−1On

prim :

Q(v) = m1, Q(w) = |det g|2m2, Q(v, w) = 0}

where Q(v, w) = tv̄gtḡw. In particular, if g = e is the identity ma-
trix, then this is the number of ways to represent the diagonal matrix
diag(m1,m2) by Q with a 2× n integral matrix with primitive rows.
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There exists a very general theory of representation numbers of one
form by another, developed by Siegel for quadratic forms [Sie35, Sie36,
Sie37] and extended to Hermitian forms by H. Braun [Bra41]. For more
information, see the recent survey of Schulze-Pillot [SP04]. The rep-
resentation numbers that arise from our formulas for parabolics other
than those described in the above two examples, however, are not of
the form considered by Siegel and Braun. For an example, take n ≥ 4
with P = B the standard Borel subgroup and U its unipotent radical.
We have the “Plücker embedding”

U(O)\SLn(O) ↪→
n−1∏
i=1

O(ni)(1.2)

h 7→ (v1(h), . . . , vn−1(h))(1.3)

where vi(h) ∈ O(ni) is the vector of i × i minors in the bottom i rows

of h. Let I ⊂
∏n−1

i=1 O(ni) be the image of this embedding. We define

rB(Q; k1, . . . , kn−1) =

#{(v1, . . . , vn−1) ∈ I : Qi(vi) = kn−i, i = 1, . . . , n− 1}

where Qi is the Hermitian form on C(ni) associated to ∧i(gtḡ). This rep-
resentation number is a coefficient of the Dirichlet series representing
the value at g of the Eisenstein series induced from the Borel. Com-
puting a unitary period of this Eisenstein series amounts to computing
the weighted sum

(1.4)
∑
Q′

1

ε(Q′)

∑
k1,...,kn−1≥1

rB(Q′; k1, . . . , kn−1)

ks11 . . . k
sn−1

n−1

where the sum is over classes in the genus class of Q and ε(Q) is the
size of the group of integral isometries preserving Q. Our main result
implies, in particular, the following.

Theorem 1.1. Let g and Q be as above. Let x = gtḡ and assume that
x is in the G(Ov0)-orbit of the identity for v0 the place of E dividing
the discriminant ∆E of E. We then have∑

Q′

1

ε(Q′)

∑
(k1···kn−1,l)=1

rB(Q′; k1, . . . , kn−1)

kλ1−λ2+1
1 . . . k

λn−1−λn+1
n−1

=

w−1
E detx−(λ1+n−1

2
)
∏
p-∆E

Pm(xp)(λ)

(∏
i<j

Lp(η
i+j+1, λi − λj)

Lp(ηi+j, λi − λj + 1)

)
.
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Here, wE is the number of units in O, η is the quadratic Dirichlet
character associated to E/Q and Lp(η

i, s) = (1−ηi(p)p−s)−1 for p - ∆E

is the local Euler factor of the L-function L(ηi, s). The expression
Pm(xp)(λ) is a polynomial in pλ1 , . . . , pλn given explicitly in (3.11).

Remark 1. This theorem is Corollary 3.1 applied to the minimal par-
abolic B of G.

Remark 2. As we assume class number one, there is a unique prime
l | ∆E and therefore v0 is well defined.

Remark 3. In some cases of small rank, there is a unique class in the
genus class of the Hermitian form associated with the identity matrix.
For example, in [Fei78] W. Feit classifies all unimodular lattices over
Z[ω] of rank at most 12, where ω is a cube root of −1. Over Z[i]
similar results were obtained by Iyanaga [Iya69]. A. Schiemann has
computed [Sch98] more extensive tables of class numbers of positive
definite unimodular Hermitian forms over the ring of integers of more
general imaginary quadratic fields. These are available at the web page
http://www.math.uni-sb.de/ag/schulze/Hermitian-lattices. We
make use of the results of Feit and Iyanaga in §4, where we give exam-
ples of the representation numbers of a single Hermitian form in some
special cases.

Remark 4. The expression Pm(xp)(λ) equals one whenever xp is in the
Kp-orbit of the identity, where Kp = GLn(Zp) × GLn(Zp) if p is split
and Kp = GLn(Ov) if p is inert and v is the place of E above p.
Consequently, the product over primes appearing in the theorem is
essentially a quotient of products of Dirichlet L-functions.

We fix here some notation regarding L-functions. First, ζE(s) is the
Dedekind zeta function ofE and ζ = ζQ. We let (ζE)−1 = Ress=1(ζE(s)).
For a Dirichlet character χ we let L(χ, s) =

∏
p Lp(χ, s) be the (fi-

nite part of) the Dirichlet L-function. If L(s) is either a Dirichlet
L-function or a Dedekind zeta function we denote by L∗(s) the com-
pleted L-function (including the archimedean factors) and by L(D)(s)
the partial L-function away from primes dividing the integer D.

2. An anisotropic unitary period as a finite sum over a
genus class

For a number field F , we denote by AF the ring of adèles of F and
by AF,f its subring of finite adèles. We will also denote A = AQ. For an
algebraic set G defined over F and a place v of F we denote Gv = G(Fv)
and we let GAF = G(AF ).



HERMITIAN FORMS AND POINTS ON FLAG VARIETIES 5

Let E be an imaginary quadratic extension of Q of discriminant ∆E.
Trough out this work we assume that E has class number one. Denote
by O = OE the ring of integers of E and let wE = #O×. For any place
p of Q we denote Ep = E⊗F Fp. Thus E∞ = C, Ep = Fp⊕Fp if p is split
in E and Ep/Qp is a quadratic extension if p is inert in E. Let G be the
group GLn regarded as an algebraic group defined over E. It will also
be convenient to denote G∞ = GLn(C), Gp = GLn(Qp)×GLn(Qp) for
a split prime p and Gp = GLn(Ep) for an inert prime p. Let K be the
standard maximal compact subgroup of GAE , i.e.

K = U(n)
∏
v<∞

GLn(Ov)

where U(n) = K∞ is the unitary group in GLn(C) and the product is
over all places of E. It will also be convenient to write K =

∏
pKp

where for finite p we have Kp = GLn(Zp) × GLn(Zp) if p is split and
Kp = GLn(Ov) if p is inert and v is the place of E above p. For an
object Y which is the restricted product Y =

∏
p Yp over all places of

Q we will denote Yf =
∏

p<∞ Yp. Let

X = {g ∈ G : tḡ = g}
be the space of Hermitian matrices in G. There is an action of G on
X given by g · x = gxtḡ. For x ∈ X we let

Hx = {g ∈ G : g · x = x}
be the unitary group associated with x. For x ∈ XQ we define the class
of x to be

[x] = GLn(O) · x
and denote x ∼ y if y ∈ [x]. Also define the genus class of x to be

[[x]] = XQ ∩ (G∞Kf ) · x
and let [[x]]/ ∼ be the set of classes in the genus class of x. Let X+

∞ be
the set of positive definite Hermitian matrices in X∞. It is well known
that if x ∈ XQ is such that x∞ ∈ X+

∞ then [[x]]/ ∼ is a finite set. Let
x ∈ XQ be positive definite at infinity, and let θ ∈ G∞ be such that

(2.1) θ · e = x.

We denote

E(x) = {g ∈ GO : g · x = x} and ε(x) = #E(x).

Recall that since E is of class number one we have GA = GQG∞Kf . It
follows that the imbedding of G∞ in GA defines a bijection

GE\GAE/K ' GO\G∞/K∞ = GLn(O)\GLn(C)/U(n).
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The symmetric space GLn(C)/U(n) is identified with X+
∞ via g 7→ g ·e.

Thus a function φ on GE\GAE/K can be regarded as a function φ+ on
GO\X+

∞ by setting φ+(g · e) = φ(g), g ∈ G∞. For the case of positive
definite quadratic forms the analogue of the following lemma is proved
in [Bor63]. For the convenience of the reader we repeat the proof here.

Lemma 2.1. Let φ be a function on GE\GAE/K then for all x ∈ X+
∞

we have∫
Hx

Q\H
x
A

φ(hθ)dh = vol((Hx
Af ∩Kf )H

e
∞)

∑
[y]∈[[x]]/∼

ε(y)−1φ+(y).

Proof. First we define a map

i : Hx
Q\Hx

A/(H
x
Af ∩Kf )H

x
∞ → [[x]]/ ∼

as follows. For any h ∈ Hx
A we write x = N−1M with N ∈ GQ and

M ∈ G∞Kf . We set
i(h) = [N · x].

We check that the map is well defined. If h = N ′−1M ′ is a second
such decomposition then N ′N−1 ∈ GE ∩ G∞Kf ⊂ GO and therefore
[N · x] = [N ′ · x]. Note also that if γ ∈ Hx

Q and k ∈ (Hx
Af ∩ Kf )H

x
∞

then γhk = (Nγ−1)−1(Mk) with Nγ−1 ∈ GE and Mk ∈ G∞Kf . Since
γ−1 ·x = x we see that indeed i is a well defined map on the double coset
space. Let y ∈ [[x]] and let M ∈ G∞Kf be such that y = M · x. By
the local to global principle for Hermitian forms there exists N ∈ GE

such that y = N · x. Now let h = N−1M ∈ Hx
A then clearly i(h) = [y].

This proves surjectivity. If h1, h2 ∈ Hx
A with respective decompositions

hi = N−1
i Mi are such that [N1 · x] = [N2 · x] then there exists γ ∈ GO

such that N1 ·x = (γN2) ·x. Note also that Mi ·x = Ni ·x and therefore
we get that N−1

1 γN2 ∈ Hx
Q, that M−1

2 γ−1M1 ∈ (Hx
Af ∩Kf )H

x
∞ and that

h1 = (N−1
1 γN2)h2(M

−1
2 γ−1M1).

This proves injectivity of i. Note that h 7→ φ(hθ) is a function on the
double coset space Hx

Q\Hx
A/(H

x
Af ∩Kf )H

x
∞ and therefore that∫

Hx
Q\H

x
A

φ(hθ)dh = vol((Hx
Af ∩Kf )H∞)

∑
t

1

#(t−1Hx
Qt ∩ (KfHx

∞))
φ(tθ)

where the sum is over a set of representatives t in the double coset
space Hx

Q\Hx
A/(H

x
Af ∩Kf )H

x
∞. Let t = N−1M be a decomposition as

above, so that i(t) = [N · x]. Then φ(tθ) = φ(Mθ) = φ+(M · x) =
φ+(N · x) = φ+(i(t)). Note also that

t−1Hx
Qt ∩ (KfH

x
∞) = M−1NHx

QN
−1M ∩ (KfH

x
∞)
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is conjugate to

NHx
QN

−1 ∩M(KfH
x
∞)M−1 = HN ·x

Q ∩ (KfH
N ·x
∞ ).

The latter equality is since Mf ∈ Kf and M∞ · x = N · x. But

HN ·x
Q ∩ (KfH

N ·x
∞ ) = E(N · x)

and therefore

#(t−1Hx
Qt ∩ (KfH

x
∞)) = ε(N · x) = ε(i(t)).

The lemma now follows. �

3. Periods of Eisenstein series and representation
numbers

3.1. Eisenstein series classical and adelic. Here we set up some
notation and define the Eisenstein series that we consider. We will
only consider Eisenstein series induced from characters on standard
parabolic subgroups. Let B = TU be the standard Borel subgroup of
G with its standard Levi decomposition and let P = MV be a parabolic
of type (n1, . . . , nt) containing B with its standard Levi decomposition.
For integers a ≤ b we denote [a, b] = {a, a+ 1, . . . , b}. Let

Ii = [n1 + · · ·+ ni−1 + 1, n1 + · · ·+ ni], i = 1, . . . , t

be the segments determined by P and let

Ni = ni+1 + · · ·+ nt, i = 1, . . . , t− 1.

We will view Ct as a subspace of Cn as follows. For µ = (µ1, . . . , µt) ∈
Ct, when convenient, we will also denote by µ the n-tuple (µ

(n1)
1 , . . . , µ

(nt)
t ),

where a(m) is the m-tuple (a, . . . , a). From now on, we will always con-

sider t-tuples µ so that n1µ1+· · ·+ntµt = 0. Denote IGP (µ) = Ind
GAE
PAE

(µ)

the representation of GAE parabolically induced from the character

diag(m1, . . . ,mt) 7→
t∏
i=1

|detmi|µiAE

on MAE . For ϕ ∈ IGP (µ) we consider the Eisenstein series

EP (g, ϕ, µ) =
∑

γ∈PE\GE

ϕ(γg).

Let

ϕµ(mvk) =
t∏
i=1

|detmi|µi+
1
2
(ni+1+···+nt−(n1+···+ni−1))
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where m = diag(m1, . . . ,mt) ∈ MAE , v ∈ VAE and k ∈ K, be the
K-invariant element of IGP (µ) normalized so that ϕµ(e) = 1. Denote
EP (g;µ) = EP (g, ϕµ, µ). Since the field E has class number one, the
embedding of GO in GE defines a bijection PO\GO ' PE\GE. As a
function on GO\X+

∞, i.e. with E+(g · e;µ) = EP (g;µ), it can therefore
be expressed by
(3.1)

E+
P (x;µ) = detxµ1+

n2+···+nt
2

∑
δ∈PO\GO

t−1∏
i=1

dNi(δ · x)−(µi−µi+1+
ni+ni+1

2
)

where di(x) is the determinant of the lower right i × i block of x. In
particular, we have

(3.2) E+
B (x;λ) = detxλ1+n−1

2

∑
δ∈BO\GO

n−1∏
i=1

di(δ · x)−(λn−i−λn−i+1+1).

The Eisenstein series E+
P (x;µ) can be expressed as a residue of the

Eisenstein series E+
B (x;λ). Whenever well-defined, we define the residue

operator ResP from functions on Cn to functions on Ct by

(ResP f)(µ) = lim
λ→µ+Λ(P )

f(λ)
∏

j∈[1,n−1]
j 6∈{n−Ni:i=1,...,t−1}

(λj − λj+1 − 1)

where

Λ(P ) = (Λn1 , . . . ,Λnt) and Λn = (
n− 1

2
,
n− 3

2
, . . . ,

1− n

2
) ∈ Cn.

It is well known that

ResGE
+(x; ·)(0) ≡ cn

is a constant and by computations of Langlands in [Lan71] we have

cn =
((ζ∗E)−1)

n−1

ζ∗E(2)ζ∗E(3) · · · ζ∗E(n)
.

We also set

c(P ) =
t∏
i=1

cni .

Using Langlands computation it can then be shown that

(3.3) ResP E
+(x; ·)(µ) = c(P )E+

P (x;µ).
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3.2. Eisenstein series and representation numbers. For x ∈ XQ
we let Qx denote the Hermitian form associated with the matrix x, i.e.
Qx(ξ) = tξ̄xξ for ξ ∈ Cn. We let x ∈ XQ be such that x∞ ∈ X+

∞ and Qx

is integral (i.e. Qx(ξ) ∈ Z for all ξ ∈ On). We will show that for such
x, the Eisenstein series E+

P (x;µ) is a Dirichlet series in the variables
(µ1−µ2, . . . , µt−1−µt). We interpret the coefficients in terms of a type
of representation number, which counts certain points on the (partial)
flag variety PE\GE. To define the representation numbers we will use
the Plücker coordinates of the flag variety. To any g ∈ GE we associate

the vectors v1(g), . . . , vn−1(g) where vi(g) ∈ E(ni) is the vector of all
i× i minors in the bottom i rows of g. For a vector v ∈ Em we denote
by [v] its E×-orbit in the projective space Pm−1

E . The map

BEg 7→ ([vN1(g)], . . . , [vNt−1(g)])

is an embedding

PE\GE ↪→
t−1∏
i=1

P
( nNi)−1

E .

It will be more convenient for us to use the identification PO\GO '
PE\GE and work with integral coordinates. The map

g 7→ (vN1(g), . . . , vNt−1(g))

also defines an embedding

PO\GO ↪→
t−1∏
i=1

(
O( nNi)/O×

)
.

We denote

I(P ;O) =

{(v1, . . . , vt−1) ∈
t−1∏
i=1

O( nNi) : ∃g ∈ GO, vNi(g) = vi, ∀i = 1, . . . , t− 1}.

Thus, a t− 1 tuple is in I(P ;O) if it satisfies the relations imposed by
the variety PE\GE.

To define the representation numbers we need some more notation.
For any matrix g ∈ Mn×k(E) and integers 1 ≤ i ≤ n, 1 ≤ j ≤ k we
denote, as usual, the (i, j)th component of g by gij. We extend this
notation as follows. Let

Im(n) = {(i1, . . . , im) ∈ Zm : 1 ≤ i1 < · · · < im ≤ n}.
For i = (i1, . . . , ir) ∈ Ir(n) and j = (j1, . . . , jq) ∈ Iq(k) we denote by
gij ∈ Mr×q(E) the matrix so that (gij)lm = giljm for l = 1, . . . , r and
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m = 1, . . . , q. Later on it will also be convenient, when q ≤ n to denote
g(j) = g[n+1−q,n],j.

Note that for g ∈ GE the linear operator ∧kg : E(nk) → E(nk) is
represented by the matrix (det gij)i, j∈Ik(n) with respect to the basis

Ei = ei1 ∧ · · · ∧ eik , i ∈ Ik(n) of E(nk), where ei, i = 1, . . . , n is the
standard basis of En. From now on when we write ∧kg we will mean
the matrix (det gij)i, j∈Ik(n).

The representation numbers that we consider are defined for positive
integers k1, . . . , kt−1 by

(3.4) rP (x; k1, . . . , kt−1) =

#{(v1, . . . , vn−1) ∈ I(P ;O) : Q∧Nix(vi) = ki, i = 1, . . . , t− 1}.

For every integer D define the Dirichlet series

Z
(D)
P (x; s1, . . . , st−1) = w

−(t−1)
E

∑
(k1k2···kn−1,D)=1

rP (x; k1, . . . , kt−1)

ks11 k
s2
2 · · · kst−1

t−1

.

We also define the genus representation numbers

(3.5) rP (gen(x); k1, . . . , kt−1) =
∑

y∈[[x]]/∼

ε−1(y)rP (y; k1, . . . , kt−1)

and the associated Dirichlet series

Z
(D)
P (gen(x); s1, . . . , st−1) = w

−(t−1)
E

∑
(k1k2···kt−1,D)=1

rP (gen(x); k1, . . . , kt−1)

ks11 k
s2
2 · · · kst−1

t−1

.

If D = 1 we will sometimes omit the superscript.
We now express special values of the Eisenstein series (3.2) in terms

of the Dirichlet series ZP (x; s1, . . . , st−1). We need the following two
Lemmas. The first is an elementary exercise in computation of a de-
terminant, which we leave to the reader.

Lemma 3.1. Let A and B be k × n matrices with k ≤ n. Then

det(AtB) =
∑

j∈Ik(n)

det(A(j)B(j)).

Lemma 3.2. For δ ∈ GO we have

di(δ · x) = Q∧ix(vi(δ)).

Proof. We parameterize the coordinates of the vector vi(δ) by (vj)j∈Ii(n)

where vj = det(δ(j)). Note that

di(δ · x) = di(δx
tδ̄) = det((δx)[n+1−i,n],[1,n]

t(δ̄[n+1−i,n],[1,n])).
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By Lemma 3.1 we get that

(3.6) di(δ · x) =
∑
j∈Ii(n)

det((δx)(j)(δ̄)(j)).

We apply Lemma 3.1 once more to obtain

(3.7) det((δx)(j)) =
∑

k∈Ii(n)

det(δ(j)xkj).

Plugging (3.7) into (3.6) we obtain that

di(δ · x) =
∑

j,k∈Ii(n)

vkv̄jxkj.

�

Applying Lemma 3.2 we may now rewrite (3.1) as

detx−(µ1+
n2+···+nt

2
)E+

P (x, µ)

= w
−(t−1)
E

∑
(v1,...,vt−1)∈I(P ;O)

t−1∏
i=1

Q∧Nix(vi)
−(µi−µi+1+

ni+ni+1
2

)

= w
−(t−1)
E

∑
k1,...,kt−1≥1

rP (x; k1, . . . , kt−1)

k
−(µ1−µ2+

n1+n2
2

)

1 · · · k−(µt−1−µt+
nt−1+nt

2
)

t−1

.

We have proven

Proposition 3.1. Let x ∈ XQ be such that x∞ ∈ X+
∞ and Qx is

integral. Then

E+
P (x;µ) =

detxµ1+
n2+···+nt

2 ZP (x;µ1 − µ2 +
n1 + n2

2
, . . . , µt−1 − µt +

nt−1 + nt
2

).

3.3. The unitary period of an Eisenstein series. In [Off], we ob-
tained the following formula for the unitary period of an Eisenstein
series.

(3.8)

∫
Hx

Q\H
x
A

E(h, ϕ, λ) = 2−n vol((E1\(E1)A)n)
∑
ν

Jx(ν, ϕ, λ).

Here E1 = {a ∈ E : aā = 1} and we view En
1 as a subgroup of T .

Denote also by T ′ the group of n× n diagonal matrices defined over Q
and by N = NE/Q the norm map from E× to Q×. The term Jx(ν, ϕ, λ)
is a factorizable linear functional on IGB (λ) parameterized by the group
of Hecke characters ν on T ′

A/N(TAE), i.e. characters ν of T ′
Q\T ′

A such
that ν ◦N = 1T is the trivial character on TAE . Thus the sum on the
right hand side of (3.8) is over the 2n characters ν = (ν1, . . . , νn) where
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νi ∈ {1T ′ , η} where η is the quadratic Hecke character associated to
E/Q by class field theory. Let θ be as in (2.1). Applying the linear
functional to the right shift R(θ)ϕλ of ϕλ by θ we have

Jx(ν,R(θ)ϕλ, λ) = Jxp(ν∞, R(θ)ϕ∞, λ)
∏
p<∞

Jxp(νp, ϕp, λ).

For a precise definition of Jx(ν, ϕ, λ) and its local factors, we refer to
[Off]. Recall that all unitary groups Hx are inner forms. We fix once
and for all a Haar measure on He

A and choose compatible measures
on the other unitary groups. The volume element appears in the for-
mula for the period because the Jx functionals on the right hand side
are proportional to the volume of Hx

A and inverse proportional to the
volume on (E1)

n
A. Globally, the functionals also satisfy

(3.9) Jx(ην, ϕ, λ) = η(detx)Jx(ν, ϕ, λ)

where ην = (ην1, . . . , ηνn). We remark that up to a finite product of
local terms, the right hand side of (3.8) is expressed explicitly as a
Dirichlet series in the variables (λ1−λ2, . . . , λn−1−λn). We recall here
the explicit formulas that we know for the local terms. Let

Jxp(νp;λ) =
vol((E1)

n
p ∩Kp)

vol(He
p ∩Kp)

Jxp(νp, ϕp, λ)

where ϕp is the Kp-invariant section in Ind
Gp
Bp

(λ) normalized so that

ϕp(e) = 1. If p <∞ is either split or such that Ep/Qp is an unramified
quadratic extension of local fields then

(3.10) Jxp(νp;λ) = Pm(xp)(λ)
∏

1≤i<j≤n

Lp(νiνjη, λi − λj)

Lp(νiνj, λi − λj + 1)

where Pm(λ) is a polynomial in pλ1 , . . . , pλn that we can write explicitly.
If xp ∈ Kp · e then Pxp(λ) = 1. For any xp ∈ Xp there exists a unique
m = m(x) = (m1, . . . ,mn) ∈ Zn with m1 ≥ · · · ≥ mn such that
xp ∈ Kp · pm where pm = diag(pm1 , . . . , pmn). We then have

(3.11) Pm(λ) =

ν0(p
m)

∏n
i=1 Lp(η

i, i)

Lp(η, 1)n

∑
σ∈W

σ

(
p〈λ−Λn,m〉

∏
i<j

Lp(νiν
−1
j , λi − λj)

Lp(νiν
−1
j η, λi − λj + 1)

)
where ν0 = (η, η2, . . . , ηn) and σ acts on λ by permuting the indices. Up
to a constant depending on xp, Pm(xp)(λ) is the m-th Hall-Littlewood
polynomial evaluated at pλ. In the case where Ep/Qp is ramified there
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are no explicit formulas available for Jxp(νp;λ), but if xp ∈ Kp · e then
we have an asymptotic formula

(3.12) lim
λ7→∞

Jxp(νp;λ) = 2n−1 ch{ν0,ην0}(ν).

In any case Jxp(νp, ϕp, λ) is a rational function in p−λ1 , . . . , p−λn . The
formulas (3.9), (3.10), (3.11) and (3.12) can be found in [Off]. In [LO]
we also observed that

Jx∞(ν,R(θ)ϕλ,∞, λ) =
vol(He

∞ ∩K∞)

vol((E1)n∞ ∩K∞)
.

We obtain that

(3.13)

∫
Hx

Q\H
x
A

E(hθ, λ) = 2−n
vol((E1\(E1)A)n)

vol((E1)nA ∩K)
vol((Hx

Af ∩Kf )H
e
∞)×

∑
ν

∏
p-∆E

Pxp(λ)

∏
i<j

LSE(νiνjη, λi − λj)

LSE(νiνj, λi − λj + 1)

∏
p|∆E

Jxp(νp;λ)


where ∆E is the discriminant of E and SE is the set of all prime numbers
that divide ∆E.

Lemma 3.3.
vol((E1\(E1)A)n)

vol((E1)nA ∩K)
= w−n

E .

Proof. The quotient of volumes is of course independent of a choice of
measure on (E1)A. We fix the decomposable Haar measure on (E1)A as
chosen in [LO] with respect to an additive character ψ = ψ0 ◦TraceE/Q
where ψ0 is an additive character on Q\A. The local measure on (E1)p
is determined by the exact sequence 1 → (E1)p → E×

p → Q×
p and the

Haar measure dE×p x = L(1,1E×p ) d
ψpx
|x|Ep

(resp. dQ×
p
x = L(1,1Q×

p
)d

(ψ0)px
|x|Qp

)

on E×
p (resp. Q×

p ), where dψpx (resp. d(ψ0)p) is the self dual Haar mea-
sure on Ep (resp. Qp) with respect to ψp (resp. (ψ0)p). As explained
in [LO], if we set

dEp = dψEp =

{
vol(OEp) Ep non-archimedean,
1
2
vol({x+ iy : 0 ≤ x, y ≤ 1}) Ep complex

where the volume is taken with respect to dψp then
∏

p dEp = |∆E|−
1
2

is independent of ψ. By Ono’s formula for the Tamagawa number of a
torus [Ono66] we have vol(E1\(E1)A) = 2L∗(1, η). By Dirichlet’s class
number formula

L∗(1, η) =
2hE

wE |∆E|
1
2
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where hE is the class number of E. Since we assume class number one,

we see that L∗(1, η) = 2w−1
E |∆E|−

1
2 and therefore that

vol((E1\(E1)A)n) = (4w−1
E |∆E|−

1
2 )n.

The volume on the denominator can be computed as the product over
all primes of its local counterparts. We leave it to the reader to verify
that

vol((E1)
n
p ∩Kp) =

{
dnEp p is either split or unramified
(2dEp)

n p = ∞ or p is a ramified prime.

In all nine cases of CM-fields of class number one we have
∑

p|∆E
1 = 1.

We therefore have

vol((E1)
n
A ∩K) = (4 |∆E|−

1
2 )n.

�

Applying Lemma 2.1 and Lemma 3.3 to (3.13) we get that

(3.14)
∑

y∈[[x]]/∼

ε(y)−1E+
B (y;λ) = (2wE)−n×

∑
ν

∏
p-∆E

Pxp(λ)

(∏
i<j

Lp(νiνjη, λi − λj)

Lp(νiνj, λi − λj + 1)

) ∏
p|∆E

Jxp(νp;λ)

 .
Combined with Proposition 3.1, (3.14) gives

(3.15)

ZB(gen(x);λ1−λ2 +1, . . . , λn−1−λn+1) = (2wE)−n detx−(λ1+n−1
2

)×

∑
ν

∏
p-∆E

Pxp(λ)

(∏
i<j

Lp(νiνjη, λi − λj)

Lp(νiνj, λi − λj + 1)

) ∏
p|∆E

Jxp(νp;λ)

 .
Similarly, applying ResP to (3.14) and taking (3.3) into consideration
we have proven

Theorem 3.1. Let x ∈ XQ be such that x∞ ∈ X+
∞ and Qx is integral.

Then for any parabolic subgroup P of G containing B we have

ZP (gen(x);µ1 − µ2 +
n1 + n2

2
, . . . , µt−1 − µt +

nt−1 + nt
2

) =

(2wE)−nc(P )−1 detx−(µ1+
n2+···+nt

2
)×

ResP
∑
ν

∏
p-∆E

Pxp(λ)

(∏
i<j

Lp(νiνjη, λi − λj)

Lp(νiνj, λi − λj + 1)

) ∏
p|∆E

Jxp(νp;λ)

 .
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If x is such that xl is in the Kl-orbit of the identity for some prime
l | ∆E then we can obtain more explicit formulas for the representation
numbers rP (x; k1, . . . , kt), for integers ki not divisible by l, by using the
asymptotic formula (3.12). In view of (3.9) we have

Corollary 3.1. If in addition to the assumptions in Theorem 3.1 we
have xl ∈ Kl · e where l is the unique prime dividing ∆E then

Z
(∆E)
P (gen(x);µ1 − µ2 +

n1 + n2

2
, . . . , µt−1 − µt +

nt−1 + nt
2

) =

w−n
E c(P )−1 detx−(µ1+

n2+···+nt
2

)
∏
p-∆E

Pxp(µ+ Λ(P ))×

ResP
∏
p-∆E

(∏
i<j

Lp(η
i+j+1, λi − λj)

Lp(ηi+j, λi − λj + 1)

)
.

For s = (s1, . . . , st−1) ∈ Ct−1 we set µ(s) = (µ1, . . . , µt) ∈ Ct where

(3.16) µi =
1

n

[
t−1∑
j=1

Nj(sj −
nj + nj+1

2
)

]
−

i−1∑
j=1

(sj −
nj + nj+1

2
).

We then have si = µi − µi+1 + ni+ni+1

2
, i = 1, . . . , t− 1.

4. Explicit examples

4.1. The mirabolic parabolic. Assume here that P is the parabolic
subgroup of G of type (n−1, 1). As explained in §1, the representation
number rP (x; k) is then the number of ways to represent k by the
Hermitian form Qx with primitive vectors. We also denote

r(x; k) = #{v ∈ On : Qx(v) = k}
and

r(gen(x); k) =
∑

y∈[[x]]/∼

ε(y)−1r(y; k).

Let

Ẑ(D)(x; s) = w−1
E

∑
(k,D)=1

r(x; k)

ks

and

Ẑ(D)(gen(x); s) = w−1
E

∑
(k,D)=1

r(gen(x); k)

ks
.

Then it is easy to see that

Ẑ(D)(x; s) = ζ
(D)
E (s)Z

(D)
P (x; s)
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and

Ẑ(D)(gen(x); s) = ζ
(D)
E (s)Z

(D)
P (gen(x); s).

Applying Corollary 3.1 and setting µ(s) = ( s
n
− 1

2
, (1 − n)( s

n
− 1

2
)) we

get that whenever xl ∈ Kl · e for l | ∆E we have

(4.1) Ẑ(∆E)(gen(x); s) = w−n
E

ζ∗E(2)ζ∗E(3) · · · ζ∗E(n− 1)

(ζ∗E)n−2
−1

detx−
s
n(

ζ
(∆E)
−1

L(∆E)(η, 2)

)n−2 n−2∏
k=2

(
L(∆E)(ηk+1, k)

L(∆E)(ηk, k + 1)

)n−(k+1) ∏
p-∆E

Pm(xp)(µ(s)+Λ(P ))

ζ
(∆E)
E (s)

n−1∏
i=1

L(∆E)(ηi+n+1, s− i)

L(∆E)(ηi+n, s+ 1− i)
.

4.2. The parabolic (1, n−2, 1). Here we assume that n ≥ 3 and that
P is the standard parabolic subgroup of G of type (1, n − 2, 1). The
Plücker coordinates of a matrix g are given by

v = v1(g) = (v1, v2, . . . , vn)

w = vn−1(g) = (w1, w2, . . . , wn)

where vi = g(i) and wi = g([1,n]−{i}). We leave it to the reader to verify
that

I(P ;O) = {v, w ∈ On
prim :

n∑
i=1

(−1)iviwi = 0}.

In order to interpret rP (x;m1,m2) as more familiar representation
numbers we will use the change of variables (v, w) 7→ (v, w′) where
w′ = (w′

1, . . . , w
′
n) with w′

i = (−1)iw̄i. Note then that

Q∧n−1x(w) = Qdetxx−1(w′).

Therefore, the representation number rP (x;m1,m2) is the size of the
set

{v, w ∈ On
prim : tv̄w = 0, Qdetxx−1(w) = m1, Qx(v) = m2}.

Note further, that the map (v, w) 7→ (v, detxx−1w) is a bijection from
this set to the set in (1.1). We also denote

r(x;m1,m2) = {v, w ∈ On : tv̄w = 0, Qdetxx−1(w) = m1, Qx(v) = m2}
and r(gen(x);m1,m2) =

∑
y∈[[x]]/∼ ε(y)

−1r(y;m1,m2). Let

Ẑ(D)(x; s1, s2) = w−2
E

∑
(m1m2,D)=1

r(x;m1,m2)

ms1
1 m

s2
2
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and

Ẑ(D)(gen(x); s1, s2) = w−2
E

∑
(m1m2,D)=1

r(gen(x);m1,m2)

ms1
1 m

s2
2

then it is easy to see that

Ẑ(D)(x; s1, s2) = ζ
(D)
E (s1)ζ

(D)
E (s2)Z

(D)
P (x; s1, s2)

and

Ẑ(D)(gen(x); s1, s2) = ζ
(D)
E (s1)ζ

(D)
E (s2)Z

(D)
P (gen(x); s1, s2).

Applying Corollary 3.1 and setting

µ(s1, s2) =

(
(n− 1)s1 + s2

n
− n− 1

2
,
s2 − s1

n
,
n− 1

2
− s1 + (n− 1)s2

n

)
we get that whenever xl ∈ Kl · e for the prime l | ∆E we have

(4.2)

Ẑ(∆E)(gen(x); s1, s2) = w−n
E

ζ∗E(2)ζ∗E(3) · · · ζ∗E(n− 2)

(ζ∗E)n−3
−1

detx−
(n−1)s1+s2

n(
ζ

(∆E)
−1

L(∆E)(η, 2)

)n−3 n−3∏
k=2

(
L(∆E)(ηk+1, k)

L(∆E)(ηk, k + 1)

)n−(k+2)

ζ
(∆E)
E (s1)ζ

(∆E)
E (s2)

∏
p-∆E

Pm(xp)(µ(s1, s2) + Λ(P ))
L(∆E)(ηn, s1 + s2 + 1− n)

L(∆E)(ηn+1, s1 + s2 + 2− n)

n−1∏
i=2

L(∆E)(ηi+n+1, s2 + 1− i)

L(∆E)(ηi+n, s2 + 2− i)

L(∆E)(ηi, s1 + i− n)

L(∆E)(ηi+1, s1 + i+ 1− n)
.

Assume now that n = 3. We apply this formula to obtain an explicit
expression for r(e;m1,m2). We have

∑
(m1m2,∆E)=1

r(gen(e);m1,m2)

ms1
1 m

s2
2

=

w−1
E ζ(∆E)(s1−1)ζ(∆E)(s1)ζ

(∆E)(s2−1)ζ(∆E)(s2)
L(∆E)(η, s1 + s2 − 2)

ζ(∆E)(s1s1 + s2 − 1)
.

We expand the right hand side as a Dirichlet series and equate coef-
ficients with the Dirichlet series on the left hand side. Doing this, we
find that whenever gcd(m1m2,∆E) = 1,

r(gen(e);m1,m2) = w−1
E

∑
d|gcd(m1,m2)

dσ1(
m1

d
)σ1(

m2

d
)φη(d)
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where

φη(d) =
∑
d0|d

µ(d/d0)η(d0)d0 = d
∏
p|d

(
1− η(p)

p

)
is a twisted Euler function.

If the field E is such that [[e]] = [e] (as is the case for example
if E = Q(

√
−1) or E = Q(

√
−3) then we obtain explicitly the rep-

resentation number r(e;m1,m2). It is easy to see that E(e) consists
of scaled permutation matrices with unit scales and therefore that
ε(e) = 6w3

E. It follows that if E is a field of class number one for
which the genus class of the identity consists of a unique class, then
whenever m1 and m2 are relatively prime to the discriminant of E,
the number r(e;m1,m2) of pairs of orthogonal, O-integral vectors ly-
ing on the complex 3-dimensional spheres of radius

√
m1 and

√
m2

respectively, is

6w2
E

∑
d|gcd(m1,m2)

dσ1(
m1

d
)σ1(

m2

d
)φη(d).

For E = Q(
√
−1) and m1m2 odd, the number

96
∑

d|gcd(m1,m2)

dσ1(m1/d)σ1(m2/d)φη(d)

counts the pairs of 6-tuples (a1, a2, . . . , a6), (b1, b2, . . . , b6) ∈ Z6 satisfy-
ing the equations

a2
1 + a2

2 + · · ·+ a2
6 = m1

b21 + b22 + · · ·+ b26 = m2

a1b1 + a2b2 + · · ·+ a6b6 = 0

a1b2 − b1a2 + a3b4 − a4b3 + a5b6 − a6b5 = 0.

4.3. The case of GL4 and the Borel. Assume here that n = 4. In
this section we give an explicit description of the incidence relations and
representation numbers arising from the minimal parabolic Eisenstein
series. Our description of the incidence relations is taken from [BFH90].

Given a 4× 4 matrix g and a subset S of {1, 2, 3, 4} with r elements,
we let AS(g) = det g(S) be the minor of the matrix obtained by taking
the bottom r rows of g and the columns indexed by the elements of S.
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Then the Plücker coordinates vi(g) are given by

v1 = t(A1, A2, A3, A4)

v2 = t(A12, A13, A14, A23, A24, A34)

v3 = t(A123, A124, A134, A234).

These coordinates satisfy the following incidence relations:

(4.3)


0 −A34 A24 −A23

A34 0 −A14 A13

−A24 A14 0 −A12

A23 −A13 A12 0

 v1 = 0

(4.4)


0 −A12 A13 −A14

A12 0 −A23 A24

−A13 A23 0 −A34

A14 −A24 A34 0

 v3 = 0

(4.5) A1A234 − A2A134 + A3A124 − A4A123 = 0

(4.6) A12A34 − A13A24 + A14A23 = 0

Furthermore, for g ∈ GO the vectors vi are obviously primitive:

(4.7) gcd(A12, A13, A14, A23, A24, A34) = gcd(A1, A2, A3, A4)

= gcd(A123, A124, A134, A234) = 1.

Conversely, we have the following result.

Theorem 4.1 ([BFH90]). If (v1, v2, v3) ∈ O4 × O6 × O4 satisfies
(4.3),(4.4) and (4.7), then (v1, v2, v3) ∈ I(B,O). In particular, (4.5)
and (4.6) are automatically satisfied.

This allows us to be explicit about the representation numbers arising
from the GL4(O) minimal parabolic Eisenstein series. For x ∈ XQ such
that Qx is integral, we have

(4.8) rB(x; j, k, l) = #{(v1, v2, v3) ∈ O4 ×O6 ×O4 : (4.3), (4.4)(4.7)

are satisfied and Qx(v1) = l, Q∧2x(v2) = k,Q∧3x(v3) = j}.
When E is equal to the field of discriminant -4 or -3, the 4× 4 identity
matrix e is the only class in its genus [Iya69, Fei78]. Therefore in these
cases we have

rB(e; j, k, l) = 24w4
ErB(gen(e); j, k, l)
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and using Corollary 3.1 and the relation (3.16) we get

(4.9) Z
(∆E)
B (e; s1, s2, s3) =

24

[
ζ(∆E)(s1 − 2)

L(∆E)(η, s1 − 1)

L(∆E)(η, s1 + s2 − 1)

ζ(∆E)(s1 + s2)

ζ(∆E)(s1 + s2 + s3)

L(∆E)(η, s1 + s2 + s3 + 1)

ζ(∆E)(s2 + 1)

L(∆E)(η, s2 + 2)

L(∆E)(η, s2 + s3 + 2)

ζ(∆E)(s2 + s3 + 3)

ζ(∆E)(s3 + 1)

L(∆E)(η, s3 + 2)

]
.

Expanding out the Dirichlet series on the right hand side will give an
expression for rB(e; j, k, l) when gcd(jkl,∆E) = 1 in terms of divisor
sums involving the Möbius function and the character η.
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