UNITARY PERIODS, HERMITIAN FORMS AND
POINTS ON FLAG VARIETIES

GAUTAM CHINTA AND OMER OFFEN

ABSTRACT. Let E be an imaginary quadratic extension of Q of
class number one. We examine certain representation numbers as-
sociated to Hermitian forms over E, which involve counting integral
points on flag varieties.

1. INTRODUCTION

The study of representation numbers of integral quadratic and Her-
mitian forms is a topic of classical interest. For example, an identity of
Jacobi says that the number of ways to write a positive integer n as a
sum of four integer squares is equal to 8 Y d where the sum is over all
divisors of n which are not divisible by 4. This result and many related
results on representation numbers of quaternary quadratic forms were
reinterpreted by Elstrodt, Grunewald and Mennicke [EGM87] as re-
sults about representation numbers of binary Hermitian forms over an
imaginary quadratic number field £ with ring of integers . They then
related these to weighted sums of point evaluations of Eisenstein series
for the group PSL,(O) acting on hyperbolic 3-space. This weighted
sum can be interpreted adelically as a period integral of the Eisenstein
series over a unitary group.

More recently, formulas for unitary periods of Eisenstein series for
the group GL,(E) have been obtained by Lapid-Rogawski [LR00] (for
n = 3) and [Off] (for general n). As in the work of [EGM87], these
formulas equate the period integral with a finite sum of Euler prod-
ucts. We remark however that the local terms in [EGMS87] are local
densities that they compute explicitly at all places. Formulas for the
same local densities were obtained by Y. Hironaka [Hir89]. Hironaka
generalized the computation of local densities in a series of papers
[Hir88b, Hir99, Hir98] and finally obtained a general formula for local
densities of Hermitian forms in [Hir00]. Though explicit, the formula
is rather complicated. In [Hir88a], Hironaka introduced spherical func-
tions on the space of Hermitian matrices associated to a quadratic
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extension of p-adic fields. She obtained a formula relating the spher-
ical functions to local densities [Hir88a, §2 Theorem]. Although the
formula indicates a strong relation between spherical functions and lo-
cal densities, it is not yet clear in general how explicit formulas for
the latter can provide explicit formulas for the first. The local data
that appears in the formula of [LR00, Off] for the unitary period of an
Eisenstein series is in terms of Hironaka’s spherical functions, explicit
formulas for which are available in [Hir99, Theorem 1] for the case of
an unramifed quadratic extension. For the case of a ramified exten-
sion, explicit formulas are only available if n = 2. Thus, in contrast
to [EGMS87], the local terms in the results for n > 2 [LR00, Off] are
explicit only outside a finite set of primes.

The purpose of the current work is to give an arithmetic applica-
tion of the formula for the unitary period. For simplicity, we restrict
our attention to an imaginary quadratic field E of class number one.
We express the unitary period of an Eisenstein series induced from
a standard parabolic subgroup P of G = GL, as a Dirichlet series
whose coefficients are certain representation numbers related to count-
ing points on the (partial) flag variety P\G. Special cases reduce to
more familiar representation numbers. For example, generalizing the
setting of [EGMS8T7], consider the Eisenstein series Ep associated to the
parabolic P of type (n —1,1) of G. Let O}, be the set of column
vectors ‘(v1,...,v,) € O™ such that the ideal generated by the v;’s
is 0. Let g € GL,(C) be such that the associated positive definite
Hermitian form

Q:v— "vggu
is integral. The Eisenstein series Ep(g; -) can be expressed as a Dirichlet
series whose m-th coefficient is

#{U S Ogmm : Q(U) - m}7
the number of ways to represent m by the Hermitian form ) with
primitive integral vectors.
For a second example, let P be the parabolic of type (1,n — 2,1).
Then Ep(g;-) is a Dirichlet series in two complex variables whose
(my, my) coefficient is

(1.1) #{veor.  weldetg]g (g to"

prim> prim *

Qv) =m, Qw) = |det g* my, Q(v,w) = 0}
where Q(v,w) = 'vg'gw. In particular, if ¢ = e is the identity ma-
trix, then this is the number of ways to represent the diagonal matrix
diag(mq,mo) by @ with a 2 X n integral matrix with primitive rows.
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There exists a very general theory of representation numbers of one
form by another, developed by Siegel for quadratic forms [Sie35, Sie36,
Sie37] and extended to Hermitian forms by H. Braun [Bra4l]. For more
information, see the recent survey of Schulze-Pillot [SP04]. The rep-
resentation numbers that arise from our formulas for parabolics other
than those described in the above two examples, however, are not of
the form considered by Siegel and Braun. For an example, take n > 4
with P = B the standard Borel subgroup and U its unipotent radical.
We have the “Pliicker embedding”

(1.2) U(O\SL,(0) — ﬁ@(’;)
(1.3) b (), vna (B)

n
7

where v;(h) € O(%) is the vector of ¢ x i minors in the bottom i rows

of h. Let T C H?:_ll () be the image of this embedding. We define

TB(Q;kl,...,knfl) =
#{(v1,...,0p1) €EL:Qi(v;) =kpy,i=1,...,n—1}

where (); is the Hermitian form on C(%) associated to AN(g'g). This rep-
resentation number is a coefficient of the Dirichlet series representing
the value at g of the Eisenstein series induced from the Borel. Com-
puting a unitary period of this Eisenstein series amounts to computing
the weighted sum

1 TB(Q/;klw'-aknfl)
(1.4) > @ > I

Q’ k1,skn—121 Tl

where the sum is over classes in the genus class of @ and €(Q) is the
size of the group of integral isometries preserving (). Our main result
implies, in particular, the following.

Theorem 1.1. Let g and QQ be as above. Let x = g'g and assume that
x 1s in the G(Oy,)-orbit of the identity for vy the place of E dividing
the discriminant Ag of E. We then have

1 TB(Q/;kl,---,kn—l) _
Z e(Q’) Z kiq—)@-ﬁ-l. kknfrx\nﬂ -

Ql (kl"'knflyl)zl cn—1

1 (a4l Ly(n N — \))
det 2= T P, (A — =
wgdetx 2 };{E (2 (A) (E Ly(n i, Ay — X\ + 1)
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Here, wg s the number of units in O, n is the quadratic Dirichlet
character associated to E/Q and Ly(n',s) = (1—n'(p)p~*)~"! forpt Ag
is the local Euler factor of the L-function L(n',s). The expression
Pz, (A) is a polynomial in p™, ..., p* given explicitly in (3.11).

Remark 1. This theorem is Corollary 3.1 applied to the minimal par-
abolic B of G.

Remark 2. As we assume class number one, there is a unique prime
| Ag and therefore vy is well defined.

Remark 3. In some cases of small rank, there is a unique class in the
genus class of the Hermitian form associated with the identity matrix.
For example, in [Fei78] W. Feit classifies all unimodular lattices over
Z|w] of rank at most 12, where w is a cube root of —1. Over Z[i]
similar results were obtained by Iyanaga [Iya69]. A. Schiemann has
computed [Sch98] more extensive tables of class numbers of positive
definite unimodular Hermitian forms over the ring of integers of more
general imaginary quadratic fields. These are available at the web page
http://www.math.uni-sb.de/ag/schulze/Hermitian-lattices. We
make use of the results of Feit and Iyanaga in §4, where we give exam-
ples of the representation numbers of a single Hermitian form in some
special cases.

Remark 4. The expression Pp,,,)(A) equals one whenever x,, is in the
K ,-orbit of the identity, where K, = GL,(Z,) x GL,(Z,) if p is split
and K, = GL,(O,) if p is inert and v is the place of E above p.
Consequently, the product over primes appearing in the theorem is
essentially a quotient of products of Dirichlet L-functions.

We fix here some notation regarding L-functions. First, (g(s) is the
Dedekind zeta function of E and ¢ = (p. Welet ((g)-1 = Ress—1(Cr(s)).
For a Dirichlet character x we let L(x,s) = [], Ly(x,s) be the (fi-
nite part of) the Dirichlet L-function. If L(s) is either a Dirichlet
L-function or a Dedekind zeta function we denote by L*(s) the com-
pleted L-function (including the archimedean factors) and by L)(s)
the partial L-function away from primes dividing the integer D.

2. AN ANISOTROPIC UNITARY PERIOD AS A FINITE SUM OVER A
GENUS CLASS

For a number field F'; we denote by Ag the ring of adeles of F' and
by A s its subring of finite adeles. We will also denote A = Ag. For an
algebraic set G defined over F' and a place v of F' we denote G, = G(F})
and we let Gu, = G(Ap).
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Let E be an imaginary quadratic extension of Q of discriminant Ag.
Trough out this work we assume that E has class number one. Denote
by O = Op the ring of integers of F and let wg = #0O*. For any place
p of Q we denote £, = EQpF,. Thus E, = C, £, = F,®F, if p is split
in F and E,/Q, is a quadratic extension if p is inert in E. Let G be the
group G L, regarded as an algebraic group defined over E. It will also
be convenient to denote Goo = GL,(C), G, = GL,(Q,) x GL,(Q,) for
a split prime p and G, = GL,(E,) for an inert prime p. Let K be the
standard maximal compact subgroup of G, i.e.

K =U(n) [[ GL.(0,)

where U(n) = K is the unitary group in GL,(C) and the product is
over all places of E. It will also be convenient to write K = Hp K,
where for finite p we have K, = GL,(Z,) x GL,(Z,) if p is split and
K, = GL,(0O,) if p is inert and v is the place of E above p. For an
object Y which is the restricted product ¥ = Hp Y, over all places of
Q we will denote Yy =[], Y, Let

X={geG:'g=g}

be the space of Hermitian matrices in G. There is an action of G on
X given by g -z = gx'g. For z € X we let

H ={geG:g-v=ux}
be the unitary group associated with z. For z € Xy we define the class
of = to be
[z] = GL,(0) - x
and denote x ~ y if y € [x]. Also define the genus class of x to be
[[#]] = Xo N (GooKy) -

and let [[z]]/ ~ be the set of classes in the genus class of z. Let X be
the set of positive definite Hermitian matrices in X. It is well known
that if x € Xg is such that x,, € X1 then [[z]]/ ~ is a finite set. Let
x € Xg be positive definite at infinity, and let § € G5 be such that

(2.1) 0-e=uzx.
We denote
E(x)={9€Gp:g-x=x}ande(x) = #E(z).

Recall that since E is of class number one we have Gy = GoGoo K. It
follows that the imbedding of G, in G defines a bijection

Gi\Ga, /K ~ Go\Guo/ Koo = GL(ON\GL,(C)/U(n).
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The symmetric space GL,(C)/U(n) is identified with X via g — g-e.
Thus a function ¢ on Gg\Gy, /K can be regarded as a function ¢ on
Go\ X1 by setting ¢7(g-e) = ¢(g), g € G. For the case of positive
definite quadratic forms the analogue of the following lemma is proved
in [Bor63]. For the convenience of the reader we repeat the proof here.

Lemma 2.1. Let ¢ be a function on Gp\Ga, /K then for all x € XJ,
we have

/ o(hO)dh = vol(HE, N KNHS) 3 ely) 6™ (y).
o \HE [yl€lf]]/~

Proof. First we define a map
s Ho\Hj/(HE, N Kp)HZ, — [[z]]/ ~

as follows. For any h € Hf we write x = N~'M with N € Gg and
M e GoKy. We set
i(h) =[N - z].

We check that the map is well defined. If h = N''M’ is a second
such decomposition then N'N~' € G N G, K; C Go and therefore
[N - z] = [N"-z]. Note also that if v € Hg and k € (Hf, N Ky)H,
then yhk = (Ny~1)"H(Mk) with Ny™' € Gg and Mk € G K. Since
y~1.2 = x we see that indeed i is a well defined map on the double coset
space. Let y € [[z]] and let M € G Ky be such that y = M - z. By
the local to global principle for Hermitian forms there exists N € Gg
such that y = N - x. Now let h = N"'M € HY then clearly i(h) = [y].
This proves surjectivity. If hy, hy € H} with respective decompositions
h; = N; ' M; are such that [N; - 2] = [N, - ] then there exists v € G
such that Ny -2 = (7yNy)-z. Note also that M;-x = N;-z and therefore
we get that N, 'y N, € Hg, that My 'y='M, € (Hfif NKy)HZ and that

hy = (Ny 'y Np)ho(My 'y~ M),

This proves injectivity of i. Note that h +— ¢(h#) is a function on the
double coset space Hg\Hy/(Hy N Ky)HZ, and therefore that

/H(g\Hg” ¢(h8)dh = vol((Hj, N Ky)H. Z o 1H(§t N ))qﬁ(té’)

where the sum is over a set of representatives ¢ in the double coset
space Ho\Hj/(Hy N Kp)HS,. Let t = N~!'M be a decomposition as
above, so that i(t) = [N - x]. Then ¢(t0) = ¢(MO) = ¢T(M - x) =
¢ (N -x) = ¢ (i(t)). Note also that

TV HGE N (KpHS) = M NHEN M N (K HZ)
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is conjugate to
NHZN "N M(K;HL)M ™ = HY* N (K,HY®).
The latter equality is since My € Ky and M, - = N -x. But
HY* N (K HY ) =E(N - 2)
and therefore
#( HEE O (K L)) = e(N - 2) = e(i(1).

The lemma now follows. O

3. PERIODS OF EISENSTEIN SERIES AND REPRESENTATION
NUMBERS

3.1. Eisenstein series classical and adelic. Here we set up some
notation and define the Eisenstein series that we consider. We will
only consider Eisenstein series induced from characters on standard
parabolic subgroups. Let B = T'U be the standard Borel subgroup of
G with its standard Levi decomposition and let P = MV be a parabolic
of type (ny,...,n;) containing B with its standard Levi decomposition.
For integers a < b we denote [a,b] = {a,a + 1,...,b}. Let

L=+ 4n+1ln +--+n,i=1,...,1
be the segments determined by P and let
Ni:ni+1—|—~~-+nt,izl,...,t—l.

We will view C' as a subspace of C" as follows. For u = (u1,..., 1) €
C!, when convenient, we will also denote by p the n-tuple (MY“), ey Mﬁ"”),

where a(™ is the m-tuple (a, ..., a). From now on, we will always con-
sider t-tuples  so that nypuy+- - -+ny, = 0. Denote IS (u) = Indgﬁj (1)
the representation of Gy, parabolically induced from the character

t
diag(my,...,my) — H |det [,
i=1

on My,. For ¢ € I§(u) we consider the Eisenstein series
Ep(g.o,m) = > ¢(v9).
YEPE\GE
Let

it i (nig1+-+ni—(n1+-+ni_1))

¢
o (muk) = H |det m;
i=1
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where m = diag(my,...,m;) € My, v € Vi, and k € K, be the
K-invariant element of I§(u) normalized so that ¢,(e) = 1. Denote
Ep(g; 1) = Ep(g,¢u, 1t). Since the field £ has class number one, the
embedding of Go in G defines a bijection Po\Go ~ Pp\Gg. As a
function on Gp\ X7, i.e. with E*(g-e;u) = Ep(g; i), it can therefore
be expressed by

(3.1)

nog+--+mng "1+"1+1
Ef(x;p) = det = E HdN (6 - a)~impint==572)
5EPo\G(9 1=1

where d;(z) is the determinant of the lower right i x ¢ block of z. In
particular, we have

n—1
(3.2)  Ej(z;\) = det ghrE Z H di(8 - )~ On=iAnmi 1),

6€Bo\Go 1=1

The Eisenstein series Fj(z; ) can be expressed as a residue of the
Eisenstein series E (x; A). Whenever well-defined, we define the residue
operator Resp from functions on C" to functions on C! by

(Resp f)(p) = lim f( ) 11 (A=A — 1)

A—p+A
—HtALP) jE€[l,n—1]
jé&{n—N;i=1,...,t—1}

n—1n-—3 1—n
5 T g

A(P) = (Ayy, ..., Ay,) and A, = (
It is well known that
Resg E*(2;-)(0) = ¢,

is a constant and by computations of Langlands in [Lan71] we have

R () B
" GGE) G

We also set

t
=1

Using Langlands computation it can then be shown that

(3-3) Resp B (w;-) (1) = e(P)Ep (x5 p).
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3.2. Eisenstein series and representation numbers. For z € Xg
we let (), denote the Hermitian form associated with the matrix x, i.e.
Q. (&) = t&x€ for £ € C". Welet x € Xg be such that z,, € X1 and Q,
is integral (i.e. Q,(§) € Z for all £ € O™). We will show that for such
z, the Eisenstein series E}(x; ) is a Dirichlet series in the variables
(1 — pi2, - -+ pe—1 — pi). We interpret the coefficients in terms of a type
of representation number, which counts certain points on the (partial)
flag variety Pg\GEg. To define the representation numbers we will use
the Pliicker coordinates of the flag variety. To any g € G we associate
the vectors v1(g),...,v,-1(g) where v;(g) € E() s the vector of all
7 X ¢ minors in the bottom ¢ rows of g. For a vector v € E™ we denote
by [v] its E*-orbit in the projective space P ~'. The map

BEg = ([UNl (Q)L cee [UNt—l (g)])
is an embedding
()1
i=1

It will be more convenient for us to use the identification Po\Gp ~
Pp\Gg and work with integral coordinates. The map
g (UNl (9)7 <o UNyy (g))

also defines an embedding
t—1
Po\Go = [ (OW j07).
i=1
We denote

Z(P;0)=

n

t—1
{(vi,...,v1) € HO(M‘) :dg € Go, vy, (9) = v, Vi=1,...,t—1}.
i=1

Thus, a t — 1 tuple is in Z(P; Q) if it satisfies the relations imposed by
the variety Pr\Gg.

To define the representation numbers we need some more notation.
For any matrix g € M, «x(F) and integers 1 < i < n, 1 < j < k we
denote, as usual, the (i,7)™ component of g by gij- We extend this

notation as follows. Let
Ln(n) ={(i1, ... im) €Z™:1<1dy < -+ <ip <n}.

For i = (iy,...,4,) € I,(n) and j = (j1,...,7q) € I,(k) we denote by
Gij € M,xq(E) the matrix so that (¢ij)um = iy, for I =1,...,r and
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m =1,...,q. Later on it will also be convenient, when ¢ < n to denote
g(j) = Gn+1—q,nl,j-

Note that for ¢ € Gp the linear operator Afg : EG® = G s
represented by the matrix (det g;;); jer,n) With respect to the basis
E, =e, N---Nej, i € Ix(n) of E(@, where e;, 7 = 1,...,n is the
standard basis of E”. From now on when we write A*g we will mean
the matrix (det gi;)i, jer,(n)-

The representation numbers that we consider are defined for positive
integers ki,...,k;_1 by

(3.4) rp(xiky, ... k1) =
#{(’Ul,. .. ,’Un_l) S I(P, O) . Q/\Nix(vi) = kia 1= 1,. .. ,t — 1}

For every integer D define the Dirichlet series

D —(t—1 rp(z;ky, ..o ki)
Zp @51, se) = wp > R
(k1ka--ky—1,D)=1
We also define the genus representation numbers
(35)  relgen(@)ike, . ki) = 3 e W)ra(yikn .o ki)
y€[[z]]/~

and the associated Dirichlet series

D —(t-1 rp(gen(x);ky, ... ki 1)
Z( )<gen( ) S1y- - ’St*l) = wE( ) Z LSS ... ]{;Sz 1
(k1ko-ki—1,D)=1 12 t—1

If D =1 we will sometimes omit the superscript.

We now express special values of the Eisenstein series (3.2) in terms
of the Dirichlet series Zp(z;sq,...,5.1). We need the following two
Lemmas. The first is an elementary exercise in computation of a de-
terminant, which we leave to the reader.

Lemma 3.1. Let A and B be k X n matrices with k <mn. Then
det(A'B Z det (AW BW).
J€IR(n)
Lemma 3.2. For 0 € Go we have
di(0 - x) = Qniz(vi(9))-

Proof. We parameterize the coordinates of the vector v;(6) by (v})jer,(n)
where v; = det(61)). Note that

di(0 - x) = d;(62"0) = det((62) s 1—im), (10 (Opnt1—im)f1.0)))-
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By Lemma 3.1 we get that
(3.6) di(0-x) = det((0x)P(5)).
Je€ILi(n)
We apply Lemma 3.1 once more to obtain
(3.7) det(( Z det(6Wxy;).
kel;i(n)
Plugging (3.7) into (3.6) we obtain that

E ViU T

Jkel;(n)

Applying Lemma 3.2 we may now rewrite (3.1) as

det g~ (m+"570) Ef(x, )

—(t—1 1+ g4l
— wE( ) § HQ/\Nzx vl Hfz i1+ ———— )

(v1,..,0¢—1)ELZ(P;0) 1=1

_ w;(t—l) Z (5U ki, ... ktfl)

+ ng
4+ +
k1,eki—12>1 k (=2 ) Ry (ft L

ng— 1+"t)

We have proven

Proposition 3.1. Let € Xg be such that v, € XL and Q, is
integral. Then

Ef(z;p) =

ni + ng Nig—1+nN
9 7"'7Mt—1_:ut+%)~

3.3. The unitary period of an Eisenstein series. In [Off], we ob-
tained the following formula for the unitary period of an Eisenstein
series.

(3.8) / E(h, ¢, \) = 27" vol((E;\( Z J* (v
H&\H&”

det 2" T Zp (s iy — g +

Here F1 = {a € E : aa = 1} and we view E} as a subgroup of 7.
Denote also by T” the group of n x n diagonal matrices defined over Q
and by N = Ng/q the norm map from E* to Q*. The term J*(v, ¢, \)
is a factorizable linear functional on I§(\) parameterized by the group
of Hecke characters v on Ty /N(T},), i.e. characters v of T\ Ty such
that v o N = 17 is the trivial character on T} ,. Thus the sum on the
right hand side of (3.8) is over the 2" characters v = (vy,. .., ;) where
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€ {17,n} where n is the quadratic Hecke character associated to
E/Q by class field theory. Let 6 be as in (2.1). Applying the linear
functional to the right shift R(0)p, of ¢, by 6 we have

Jx(”? R(Q)SDM/\) = ‘]xp(VOO) 9000’ H ‘]w VINSDP?

p<oo

For a precise definition of J*(v, ¢, A) and its local factors, we refer to
[Off]. Recall that all unitary groups H® are inner forms. We fix once
and for all a Haar measure on H§ and choose compatible measures
on the other unitary groups. The volume element appears in the for-
mula for the period because the J* functionals on the right hand side
are proportional to the volume of H} and inverse proportional to the
volume on (F4)%. Globally, the functionals also satisfy

(3.9) JE (v, o, N) = n(det ) J* (v, p, \)

where nv = (nuy,...,nv,). We remark that up to a finite product of

local terms, the right hand side of (3.8) is expressed explicitly as a

Dirichlet series in the variables (A; — g, ..., An_1 — A,). We recall here

the explicit formulas that we know for the local terms. Let

vol((Ey)y N K,)
vol(He N K,)

7 (v A) = 7 (Vp, p, A)
where ¢, is the K -invariant section in Indgi(k) normalized so that
@p(e) = 1. If p < oo is either split or such that E,/Q, is an unramified
quadratic extension of local fields then

Lp(ViVjT], >\z — )\]>
Lp(Vil/j, )\l - )\j + 1)

(3.10) J"Tp(l/p; )\) = Pm(zp)(k)

1<i<j<n

where P,,(\) is a polynomial in p*, ... p* that we can write explicitly.
If 2, € K, - e then P, (\) = 1. For any x, € X,, there exists a unique
m = m(x) = (mq,...,m,) € Z" with my > --- > m, such that
z, € K, - p™ where p™ = diag(p™,...,p"). We then have

(3.11) Pn,()\) =

vo(p™ )Hx 1L 77 0) Zg (A—Ap,m) H Lp(VzV 17/\i_)‘j)
0 oy Lp(ViVj 77,/\1 )\j‘l—l)

oceW

where vy = (n,7?,...,7") and ¢ acts on A by permuting the indices. Up
to a constant depending on x,, Pp(,)(}) is the m-th Hall-Littlewood
polynomial evaluated at p*. In the case where E,/Q, is ramified there
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are no explicit formulas available for J% (1,; A), but if x, € K, - e then
we have an asymptotic formula

(3.12) Jim 7 (157 A) = 277 chgy gy (v).
In any case J% (v, p,, \) is a rational function in p=,...,p~*». The

formulas (3.9), (3.10), (3.11) and (3.12) can be found in [Off]. In [LO]

we also observed that
Jgo(ya R(9>(p)\,007 )‘) =

We obtain that

(3.13) / E(ho,\) = 27"
HQ\Hf\f

vol(HS, N Kw)
vol((Ey), N Ky)

vol((E1\(E1)a)")
vol((E1)} N K)

vol((HE, N K ) HE,)

L3 (vivm, \i — \j)
PORE N | ROVE N § 5o v vl § RAICERY
- A i L E(I/Z'l/j, )\z — )\j + 1) A
where Ag is the discriminant of E and Sg is the set of all prime numbers
that divide Ag.

Lemma 3.3.
vol((En\(Ev)a)") _ . _n
vol(EygnK) P

Proof. The quotient of volumes is of course independent of a choice of
measure on (E7),. We fix the decomposable Haar measure on (E}), as
chosen in [LO| with respect to an additive character ¢ = 1)y o Traceg g
where 1)y is an additive character on Q\A. The local measure on (Ey),
is determined by the exact sequence 1 — (Ey), — E — QY and the

d¥rx _ d¥o)p x
EP (resp. dgxz = L(1,1gx) el )

on EX (resp. Qx), where d*»z (resp. dW)») is the self dual Haar mea-

sure on E, (resp. Q,) with respect to ¢, (resp. (¢g),). As explained
in [LOJ, if we set

Haar measure dpxx = L(1,1px)

" vol(Opg,) E, non-archimedean,
DE - DE - P
P tvol({z +iy: 0<z,y <1}) E, complex

where the volume is taken with respect to d* then [],0g, = [A EF%
is independent of ¢). By Ono’s formula for the Tamagawa number of a
torus [Ono66| we have vol(Ey\(E1)a) = 2L*(1,n). By Dirichlet’s class
number formula

2hg

L*(1,n) =
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where hg is the class number of /. Since we assume class number one,
1
we see that L*(1,7) = 2wy |Ap| 2 and therefore that
_1
vol((E\(E1)a)") = (4w |[Ag|72)".

The volume on the denominator can be computed as the product over
all primes of its local counterparts. We leave it to the reader to verify
that

vol((Ey), N K,) = { o p is either split or unramified

(ZDE )" p = o0 or pis a ramified prime.

In all nine cases of CM-fields of class number one we have >, 1 =1.
We therefore have

vol((E)j NK) = (4]Ag72)™.

Applying Lemma 2.1 and Lemma 3.3 to (3.13) we get that
(314) D e(y) 'Ef(y:A) = (2wg) "X

ye(a]]/~
L,(vivin, A —
P, = Ty
> | T (Il 4 ) I
v | plAg i< plAg
Combined with Proposition 3.1, (3.14) gives

(3.15)
Zp(gen(z); A —Aa+1, ..., At — A+ 1) = (2wg) " det 2~ M1+ ) x

Vit A — -
> T e (I 252 ) T
v E

Similarly, applying Resp to (3.14) and taking (3.3) into consideration
we have proven

Theorem 3.1. Let x € X be such that xo, € X1 and Q, is integral.
Then for any parabolic subgroup P of G containing B we have

) =

n1 + ng N1+ 1y
5 7"-7/1’t—1_/1't+T

(2wg) "e(P) ' det a1t Y

Lp VZ‘V]' 7)\i — >‘j z
e 3 | T 20 (T2 2 ) T

v AE 1<j p|AE

Zp(gen(x); 1 — p2 +
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If x is such that z; is in the Kj-orbit of the identity for some prime
| Ag then we can obtain more explicit formulas for the representation
numbers rp(z; ki, .. ., k), for integers k; not divisible by [, by using the
asymptotic formula (3.12). In view of (3.9) we have

Corollary 3.1. If in addition to the assumptions in Theorem 3.1 we
have x; € K; - e where [ is the unique prime dividing Ag then

ny+n ng1+n
Z5 (gen(x); pu — prz + — e~ =) =
w"e(P) "t det =0t 5 T By, (1 + AP)) %
pAp
z+j+1 )\ — A )
e I (T s 25 7).
1<)
For s = (s1,...,8:1) € Ct7! we set u(s) = ( ,oo oy i) € Ct where

t—1
1 n +n _njt+n
(316) [ = ﬁ E Nj( My T T+l J+1 ] § : J ]-‘rl)
j=1 j=1

We then have s; = p; — pi11 + "’er“ Ji=1,...,t—1.

4. EXPLICIT EXAMPLES

4.1. The mirabolic parabolic. Assume here that P is the parabolic
subgroup of G of type (n—1,1). As explained in §1, the representation
number rp(z;k) is then the number of ways to represent k by the
Hermitian form @), with primitive vectors. We also denote

r(e;k) = #{v € O": Qu(v) = k)

and
r(gen(z)ik) = Y ely) 'r(y; k).
ye([=]]/~
Let
Z(D)(x;s):wgl Z r(x,sk:)
(k,D)=1
and

Then it is easy to see that
2P (w;5) = ¢ ()2 (w5 9)
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and

Z®) (gen(z); s) = () (s)Z <D><gen< ); 5)-
Applying Corollary 3.1 and setting u(s) = (£ — 5, (1 —n)(£ — 3)) we
get that whenever z; € K; - e for [ | Ap we have

: ()%
n=2p_9 n—(k+1)
C(—AlE) ( L(AE) (nk+1’ k) >
T Ao Pongay) (1(8)+A(P))
(L(AE)(TL 2) ,g LA (b, k + 1) };IE (

H—n—i—l 5 — 2)

(AE
HL(AE z+n S+1—Z)

4.2. The parabolic (1,n—2,1). Here we assume that n > 3 and that
P is the standard parabolic subgroup of G of type (1,n — 2,1). The
Pliicker coordinates of a matrix g are given by

v=uvi(9) = (v1,v9,...,0,)
w=uv,-1(9) = (w,wy,...,wy,)

where v; = ¢ and w; = ¢~ We leave it to the reader to verify
that

n
I(P;0) ={v,w € Op,,. : Y (—1)'vw; = 0}.
=1
In order to interpret rp(z;mq,my) as more familiar representation

numbers we will use the change of variables (v,w) — (v,w') where
/

w' = (w,...,w,) with w, = (—1)%0;. Note then that
Q/\”*lx(w) - Qdetmm*l(w/)'

Therefore, the representation number rp(x; my, ms) is the size of the
set

{v,we O},  Tw=0, Quetzs1 (W) =M1, Qu(v) = ma}.

Note further, that the map (v,w) — (v, det zz~'w) is a bijection from
this set to the set in (1.1). We also denote

T(LU mlamZ) - {’U w e o":tow = 0 Qdetx:}c—1< ) =my, Qm(’U) = m2}

and r(gen(z); mi, ma) = 3, i/ e(y)tr(y; my, my). Let

Z(D)($; 51,52) = sz Z —T(x;mth)

mytms?
(mima,D)=1
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and

_9 Z r(gen(x);my, moy)

Z(D)(gen(x); S1,82) = wg

(mimg,D)=1
then it is easy to see that
20 wss1,52) = (i (51)C” (s2) 25 (w51, 52)
and
2P (gen(x); 51, 52) = " (51)C” (52)Zp (gen(); 51, 52).
Applying Corollary 3.1 and setting
(n—1)s1+s2 n—1 s9—s3 n—1 B 31—1—(n—1)32)

p(s1, s2) = ( - ; ;

n 2 n 2 n

we get that whenever x; € K - e for the prime [ | Ag we have

(4.2)

B2 (gen(z); 51, 52) = wg" CE@)%((?)C)*');L‘_%M 2 det 7~ R
E/-1

A

n—3 ., _ n—

7A1E) ’i_[?’ L(AE)(nkH,k) (k+2) C(AE)(S ) (AE)(S )
2) ) e \LER(h k4 1) BoAE

L(AE)(nn, s1+sa+1-— n)
L(AE)(nn'H, S1+ S, +2— n)

H Pm(xp)(:u(slv 82) + A(P))

S LR (it g 41— ) LAE)(pi s 40— n)
L(AE)(ni+n, So + 2 — Z) L(AE)(niJrl, S1 + 7+ 1— n) '

=2
Assume now that n = 3. We apply this formula to obtain an explicit
expression for r(e;my, my). We have

Z r(gen(e); my, ms)

(mima,Ag)=1
LAE)(n, 51 + 59 — 2)
“1-(Ar) (g — 1) (AR) (AB) (g, —1)((Ar) ) 21 2 )
wg ¢ (51 = 1) (51) 7 (52 = 1) (s2) CB) (5151 + 55— 1)
We expand the right hand side as a Dirichlet series and equate coef-
ficients with the Dirichlet series on the left hand side. Doing this, we
find that whenever ged(myma, Ag) =1,

r(gen(e)im,my) = wp' Y doy(SH)ou(S)éy(d)

dlged(mi,mz2)
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where

on(d) = 3 uldfdoyn(do)dy = d ] | (1 - %@)

dold pld

is a twisted Euler function.

If the field F is such that [[e]] = [e] (as is the case for example
if £ = Q(v/—1) or E = Q(v/-3) then we obtain explicitly the rep-
resentation number r(e;my, mg). It is easy to see that £(e) consists
of scaled permutation matrices with unit scales and therefore that
e(e) = 6w?. Tt follows that if E is a field of class number one for
which the genus class of the identity consists of a unique class, then
whenever m; and msy are relatively prime to the discriminant of F,
the number 7(e;my, msy) of pairs of orthogonal, O-integral vectors ly-
ing on the complex 3-dimensional spheres of radius y/m; and /mg
respectively, is

buh Y dor(T)on()6,(d)

dlged(ma,mz)

For E = Q(v/—1) and mymsy odd, the number

96 Y doy(my/d)or(ma/d)dy(d)

d|ged(mi,m2)

counts the pairs of 6-tuples (ay,as, ..., ag), (b1, ba, ..., bs) € Z° satisfy-
ing the equations

ai+as+-tag = my
b+ b5+ 4+bp = my

aiby + azby + -+ -+ aghs =
albg—b1a2+a3b4—a4bg+a5bﬁ—a6b5 = 0.

4.3. The case of GL, and the Borel. Assume here that n = 4. In
this section we give an explicit description of the incidence relations and
representation numbers arising from the minimal parabolic Eisenstein
series. Our description of the incidence relations is taken from [BFH90].

Given a 4 x 4 matrix g and a subset S of {1, 2, 3,4} with r elements,
we let Ag(g) = det g be the minor of the matrix obtained by taking
the bottom r rows of g and the columns indexed by the elements of S.
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Then the Pliicker coordinates v;(g) are given by

U1 t<A17A27A37A4>
%) t(A12> A13, A, A237 A247 A34)
U3 t(A123, A1247 A134, A234)-

19

These coordinates satisfy the following incidence relations:

0 —As Ay —Asg

Asy 0 —Au A
4.3 =0
(43) —Agy  An 0 —Ap | U

Ags  —Aiz Ao 0

0 —Apn Az —Au

Aqo 0 —Ays Ay _
(4.4) —Aiz Ao 0 —Ay | BT 0

Ay —Ay  Asy 0
(4.5) A1 Agzy — AsAvsg + AsAjoy — AyAiass =0
(4.6) A19Asy — A13 Aoy + A1g Ao =0

Furthermore, for g € Go the vectors v; are obviously primitive:

(4.7)  gcd(Aia, Ars, Arg, Aos, Asg, Azs) = ged(Aq, Ag, A, Ay)
= ged( Az, Aroa, Arza, Aoge) = 1.
Conversely, we have the following result.

Theorem 4.1 ([BFH90)). If (v1,ve,v3) € O x O x O* satisfies
(4.3),(4.4) and (4.7), then (vi,v9,v3) € Z(B,0). In particular, (4.5)
and (4.6) are automatically satisfied.

This allows us to be explicit about the representation numbers arising
from the GL,(O) minimal parabolic Eisenstein series. For x € Xg such
that (), is integral, we have
(4.8) rp(w;j, k1) = #{(v1,v9,v3) € O* x O x O*: (4.3), (4.4)(4.7)

are satisfied and Q. (v1) = I, Qp2,(v2) = k, Qrs2(v3) = j}.

When F is equal to the field of discriminant -4 or -3, the 4 x 4 identity
matrix e is the only class in its genus [Iya69, Fei78]. Therefore in these
cases we have

rp(e; . k1) = 24wyrp(gen(e); j, k, 1)
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and using Corollary 3.1 and the relation (3.16) we get

(4.9) ZJ(BAE)((&; S1, 82, 83) =

24

C(AE)(Sl — 2) L(AE)(U, S1 + So — ].) C(AE)(Sl -+ S9 —+ 83)

LAE) (n, sy —1)  (BB)(sy+s9)  LAE(n, 81+ 859+ s34+ 1)

C(AE)(SQ + 1) L(AE)(T], So + S3 -+ 2) C(AE)(Sg + 1)
L(AE)(% S2 + 2) C(AE)<S2 + 83+ 3) L(AE)(% 53 + 2) ‘

Expanding out the Dirichlet series on the right hand side will give an
expression for rp(e; j, k, 1) when ged(jkl, Ag) = 1 in terms of divisor
sums involving the Mobius function and the character 7.

[BFH90)

[Bor63]
[Bradl]
[EGMS?7)
[Fei7g]
[Hir88a]
[Hir88b)
[Hirg9)
[Hir0g]
[Hir99]

[Hir00]

[Iya69)]

[Lan71]
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