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Abstract

Generalized theta functions are residues of metaplectic Eisenstein
series. Even in the case of the n-fold cover of GL(2), the Fourier
coefficients of these mysterious functions have not been determined
beyond n = 3. However, a conjecture of Patterson illuminates the
case n = 4. In this paper, we make a new conjecture concerning the
Fourier coefficients of the theta function on the 6-fold cover of GL(2),
present some evidence for the conjecture, and prove it in the case
that the base field is a rational function field. Though the conjecture
involves a single complex variable, our approach makes critical use of
double Dirichlet series.

1 Introduction

The quadratic theta function

θ(z) =
∑
n∈Z

e2πin
2z

has been a familiar object since the 19th century and it has found many
applications in number theory and other fields. Weil observed that θ(z) can
be interpreted as an automorphic form on the two-fold cover of GL(2). An
Eisenstein series E(2)(z, s) on this group can be constructed which has a pole
at s = 3/4, and whose residue at this pole is a constant multiple of θ(z).
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Kubota [Kub69] investigated automorphic forms on the corresponding
n-fold cover of GL(2), n ≥ 3. He defined a metaplectic Eisenstein series
E(n)(z, s) on this group whose constant coefficient has a pole at s = 1/2 +
1/(2n). It follows that E(n)(z, s) has a pole at this point, and Kubota defined
the nth-order analog of the theta function, as

θ(n)(z) = Ress=1/2+1/(2n)E
(n)(z, s).

The precise nature of this general nth order theta function seems to be far
more mysterious than the familiar n = 2 case. Patterson [Pat77a, Pat77b]
determined (by means of a metaplectic converse theorem) that in the case
n = 3 its Fourier coefficients are essentially cubic Gauss sums. Kazhdan and
Patterson [KP84] then showed that on the n-cover of GL(r) the Whittaker-
Fourier coefficients of an analogously defined theta function satisfy certain
periodicity properties. However, even for GL(2), for n ≥ 4 the Fourier
coefficients of θ(n)(z) have proved quite difficult to determine. Since they
are naturally defined from an arithmetic situation (the n-fold cover is built
using nth power local Hilbert symbols; in some sense the existence of such a
group is a reflection of nth order reciprocity), it would be of great interest to
do this, and such a determination would be likely to have applications. See,
for example, [BBCFH06] for such an application which does not rely on a
precise understanding of the coefficients.

Patterson [Pat84] (see also [EP92] for a correction and refinement of the
original conjecture) has made a beautiful conjecture about the Fourier coef-
ficients of θ(n)(z) in the case n = 4. It was proved when the ground field is
a rational function field in [Hof92], (see [Pat07] for a version of [Hof92] from
Patterson’s point of view). In addition, [We96], [EP92], extensive numerical
investigations have been made in the cases n = 4, 6. But aside from some
suggestions concerning the algebraic number field in which these coefficients
ought to lie the values of the coefficients are not in general understood, even
heuristically.

The purpose of this paper is to formulate a conjecture about some of the
Fourier coefficients of θ(n)(z) in the case n = 6, and to prove this conjecture in
the case of a rational function field. This conjecture seems to be “almost”true
in a more general setting than n = 6 but some extra insight is still missing.

In the next section we will set up some notation and explain in a rough,
but hopefully informative way, what is known, what has been conjectured,
and what is still inscrutable.
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2 A formulation of the conjecture

Though a great deal of number theory is concerned with Euler products,
constructions on the metaplectic group frequently give rise to Dirichlet se-
ries with analytic continuation and functional equation that are not Euler
products. Remarkably, it is an observation of Patterson that the equality of
two such series may nonetheless encode deep information about the Fourier
coefficients of the higher order theta functions. In this section, we build
on Patterson’s insight to arrive at a new conjecture concerning θ(6) that is
formulated as such an equality, and we explain its consequences.

The series we require are Rankin-Selberg convolutions of metaplectic
forms. Unfortunately, such convolutions require a great deal of care at bad
places (indeed, even in the non-metaplectic case the treatment of such places
is delicate). To avoid these difficulties we will work heuristically at first,
following the style in the early sections of [Hof93]. We will then give a full,
precise proof of the conjecture in the rational function field case in Section
6. One expects many aspects of the theory of automorphic forms over global
fields to be uniform in terms of the base field, so the proof in this case is a
likely indication of a more general phenomenon.

Let F be a global field containing the 2nth roots of unity. Let o denote
the ring of integers of F . To give the heuristic treatment, we will imagine
that the class number of o is one and that all primes are unramified. These
assumptions are never truly satisfied, but the S-integer formalism, introduced
by Patterson in this context, allows one to make the heuristic definitions we
give below precise. In addition to these simplifying assumptions, we will
not keep track of powers of the numbers 2 and π in gamma factors, and we
will neglect values of characters whose conductors consist of ramified primes
(simplifying, for example, the statement of the Davenport-Hasse relation). A
rational function field Fq(t) with q congruent to 1 modulo 4n comes close to
satisfying these simplifying assumptions, and thus conjectures formulated via
such simplifying assumptions can usually be stated, and occasionally proved,
rigorously in this case. That is the situation with the conjecture we present
below.

A fundamental object for us is the normalized Gauss sum with numerator
m and denominator d formed with the jth power of the kth power residue
symbol:

G
(k)
j (m, d) = Nd−1/2

∑
α (mod d)

(α
d

)j
k
e
(αm
d

)
,
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where e(x) is an additive character of conductor o and Nd denotes the abso-

lute norm of d. With this normalization, |G(k)
j (m, d)| = 1 when d is square-

free and (m, d) = 1.
Because we will later work with both the n and 2n-fold covers, let us

begin with a discussion of the k-fold cover, k ≥ 2. In this context, the mth

Fourier coefficient of Kubota’s Eisenstein series consists of an arithmetic part
times a Whittaker function (essentially a K-Bessel function with index 1/k).
The arithmetic part is a Dirichlet series

D
(k)
j (s,m) =

∑
d

G
(k)
j (m, d)

Nds
.

Here j is prime to k, and arbitrary; it may be regarded as parametrizing the
different embeddings of the abstract group of k-th roots of unity into C×.
The sum is over d sufficiently congruent to 1. (More carefully, one would
keep track of the dependence on the inducing data for the Eisenstein series
and obtain a sum over non-zero ideal classes, see [BB06].) The product

D̃
(k)
j (s,m2) = Γk(s)ζ

∗(ks− k/2 + 1)D
(k)
j (s,m2) (2.1)

has an analytic continuation and satisfies a functional equation

Nms/2D̃
(k)
j (s,m2) = D̃

(k)
j (1− s,m2)Nm(1−s)/2. (2.2)

Here

Γk(s) = Γ

(
s− 1

2
+

1

k

)
Γ

(
s− 1

2
+

2

k

)
· · ·Γ

(
s− 1

2
+
k − 1

k

)
(2.3)

and ζ∗ denotes the completed zeta function of the field F. The normalized
series (2.1) is analytic except for simple poles at s = 1/2 + 1/k, 1/2 − 1/k,
and its residue at s = 1/2 + 1/k is given by

Ress=1/2+1/kD̃
(k)
j (s,m) = c

τ
(k)
j (m)

Nm1/2k
, (2.4)

where c is a nonzero constant. The numerator τ
(k)
j (m) is the object we are

investigating: the mth Fourier coefficient of the theta function on the k-fold
cover of GL(2).
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The Eisenstein series is an eigenfunction of the Hecke operators Tpk for
every prime p and consequently so is its residue, the theta function. This
forces the τ

(k)
j (m) to obey certain Hecke relations (see [KP84, Hof93]). These

are:
τ

(k)
1 (mpi) = G

(k)
i+1(m, p)τ

(k)
1 (mpk−2−i), (2.5)

valid for k ≥ 2, p a prime, 0 ≤ i ≤ k − 2, and (m, p) = 1.
For the moment we will restrict ourselves to the case m = 1. Our object

is to understand the nature of the coefficients τ
(k)
1 (pi), that is the coefficients

at prime power indices of the theta function formed from the first power of
the kth order residue symbol. The periodicity relation proved by Kazhdan
and Patterson reduces, in this case, to the relation

τ
(k)
1 (mpk) = Np1/2τ

(k)
1 (m)

for any m. Thus when studying τ
(k)
1 (pi) we need go no higher than i = n−1.

Referring to (2.5) we see from taking i = k− 1 that τ
(k)
1 (pk−1) = 0. Also,

from i = k − 2 we see (normalizing so τ
(k)
1 (1) = 1), that

τ
(k)
1 (pk−2) = G

(k)
k−1(1, p).

Thus the Hecke relations completely determine the coefficients in the cases
k = 2, the familiar quadratic theta function, and k = 3, the cubic theta
function whose coefficients were found by Patterson. In particular, when
k = 3

τ
(3)
1 (p) = G

(3)
2 (1, p) = G

(3)
1 (1, p)

and τ
(3)
1 (p2) = 0.

Unfortunately, for n ≥ 4, the information provided by the Hecke operators
is incomplete. The first undetermined case, n = 4, was studied by Patterson
in [Pat84]. The Hecke relations in this case give τ

(4)
1 (p3) = 0 and

τ
(4)
1 (p2) = G

(4)
3 (1, p) = G

(4)
1 (1, p),

but τ
(4)
1 (p) is just related to itself. When the m is reintroduced and we use

periodicity we have the more refined information

τ
(4)
1 (mp) = G

(4)
2 (m, p)τ

(4)
1 (mp).
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The Gauss sum is

G
(4)
2 (m, p) =

(
m

p

)2

4

G
(4)
2 (1, p) =

(
m

p

)
2

G
(2)
1 (1, p) =

(
m

p

)
2

,

as the quadratic Gauss sum is trivial by our simplifying assumption. Thus
τ

(4)
1 (mp) must vanish unless m is a quadratic residue modulo p.

Patterson observed that there are two natural Dirichlet series that can be
formed:

D1(w) = ζ(4w − 1)
∑ G

(4)
3 (1,m)

Nmw

and

D2(w) = ζ(4w − 1)
∑ τ

(4)
1 (m)2

Nmw
.

The first is the first Fourier coefficient of the Eisenstein series on the 4-
cover of GL(2), multiplied by its normalizing zeta function, and with the
variable change 2s−1/2→ w. The second is the Rankin-Selberg convolution
of the theta function with itself (not its conjugate), also multiplied by its
normalizing zeta factor. He conjectured that

D2(w) = D1(w)2.

This conjecture was based on the fact that both sides had double poles in
the same places, both had identical gamma factors, and when corresponding
coefficients were matched, all provable properties of the coefficients of D2(w)
were consistent with the completely known D1(w). If this conjecture were
true it would follow that

τ
(4)
1 (m)2 = G

(4)
3 (1,m)

∑
d1d2=m

(
d1

d2

)
2

and in particular that
τ

(4)
1 (p)2 = 2G

(4)
3 (1, p).

To date, Patterson’s conjecture has remained unproved and even ungener-
alized. A remarkable aspect of it is that it states that a naturally occurring
Dirichlet series without an Euler product is equal to a square of another such
Dirichlet series. In fact, one side (D2) is the Rankin-Selberg convolution of
a theta function on the 4-cover of GL(2) with itself. The other side (D2

1) is
the square of a Rankin-Selberg convolution. The object being squared, D1 is
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the first Fourier coefficient of the Eisenstein series on the 4-cover of GL(2).
Using [KP84], it may also be regarded as the analog of the standard L- series
associated to the theta function on the 4-cover of GL(3).

A weaker conjecture, that has been generalized, was made in [BH89]. It

implies that τ
(4)
1 (p)G

(4)
1 (1, p) = τ

(4)
3 (p), i.e. that the argument of τ

(4)
1 (p) is the

square root of the conjugate Gauss sum. This was proved by Suzuki [Suz97]
in the case where the ground field is a function field.

We now make a new conjecture relating Rankin-Selberg convolutions in-
volving coefficients of the higher-order theta functions. We specify the 6-th
order residue symbol by equation (3.6) below wth n = 3.

Conjecture 2.1

ζ(3u− 1/2)
∑ τ

(6)
1 (m2)

Nmu
= ζ(3u− 1/2)

∑ G
(3)
1 (1, d)

Ndu
·
∑ τ

(3)
1 (m)

Nmu
.

The left hand side is the convolution of the theta function on the 6-fold cover
of GL(2) with the theta function on the double cover of GL(2). The right
hand side is the product of two terms: the first coefficient of the cubic Kubota
Eisenstein series, multiplied by its normalizing zeta factor, and the Mellin
transform of the theta function on the 3-fold cover of GL(2). In this case
(n = 3) the two factors on the right are equal, but we write it this way with
an eye toward potential future generalizations. We include the apparently
extraneous zeta functions as they arise naturally in the normalizing factors.

Writing m = m1m
2
2m

3
3, with m1,m2 square free and relatively prime,

m3 unrestricted we see by the periodicity properties of τ
(6)
1 and the known

valuation of τ
(3)
1 that this conjectured equality translates to

∑ τ
(6)
1 (m2

1m
4
2)

Nmu
1Nm2u

2

=

(∑ G
(3)
1 (1, d)

Ndu

)2

,

another striking identity involving the square of a series without an Euler
product. Note that the Gauss sums G

(3)
1 (1, d) on the right hand side vanish

unless d is square free.
If we cancel the zeta factor, and equate corresponding coefficients we have

the following predicted behavior for the coefficients τ
(6)
1 (m2

1m
4
2):

τ
(6)
1 (m2

1m
4
2) = G

(3)
1 (1,m2)

2G
(3)
1 (1,m1)

(
m2

m1

)2

3

∑
m1=d1d2

(
d2

d1

)
3

.
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Bearing in mind that G
(3)
1 (1,m2)

2 = G
(6)
1 (1,m2) by the Davenport-Hasse

relation, this relation is consistent with what is implied by setting k = 6 in
the Hecke relations (2.5). Similarly all aspects of the identity given above
are consistent with the Hecke relations. Setting m2 = 1 and m1 = p, this
reduces to

τ
(6)
1 (p2) = 2G

(3)
1 (1, p).

The Conjecture is made after verifying that the polar behavior and gamma
factors of the left and right hand sides are identical. This verification is the
content of Sections 3, 4 and 5. Indeed, as will be seen, a similar conjecture
is almost true for the general case where 3 is replaced by n and 6 by 2n.
The difficulty is that the identity is partially, but not completely, compatible
with the Hecke relations.

3 A double Dirichlet series obtained from the

2n-cover of GL(2)

We will obtain the desired information about the poles and gamma factors
of the series above by first performing the easier task of determining the
analytic continuation, polar lines and functional equations of several related
multiple Dirichlet series. We begin by defining the following double Dirichlet
series, initially for <(s),<(w) > 1. Let

Z1(s, w) =
∑
d,m

G
(2n)
1 (m2, d)

NdsNmw
. (3.1)

Also, for n odd, let

Z2(s, w) =
∑
d,m

G
(n)
1 (m2, d)

NdsNmw
, (3.2)

and for n even, let

Z2(s, w) =
∑
d,m

G
(2n)
n+1(m

2, d)

NdsNmw
. (3.3)

The corresponding normalized series are

Z̃1(s, w) = ζ∗(δn(s+ w − 1/2)− δn/2 + 1)ζ∗(2ns− n+ 1)Z1(s, w) (3.4)

8



and

Z̃2(s, w) = ζ∗(δns− δn/2 + 1)ζ∗(2ns+ 2nw − 2n+ 1)Z2(s, w). (3.5)

Here

δ =

{
1 if n is odd

2 if n is even,

and the ∗ in the zeta functions again means that the appropriate gamma
factors have been included.

Let χd and ψd be multiplicative characters of conductor d, with ψ2
d = 1.

Then if τ(χ) refers to the usual Gauss sum corresponding to χ, normalized
to have absolute value 1, the Davenport-Hasse relation states (ignoring char-
acters ramified at primes dividing 2n) that

τ(χd) τ(χdψd) = τ(χ2
d).

We have also suppressed the quadratic Gauss sum as it is trivial with our
simplifying assumptions. In the case n is odd we choose the 2nth order power
residue symbol (α

d

)
2n

=
(α
d

)
n

(α
d

)
2
, (3.6)

and so the Davenport-Hasse relation implies that

G
(2n)
1 (1, d)G

(n)
1 (1, d) = G

(n)
2 (1, d). (3.7)

In the case n = 3 this translates into the familiar

G
(6)
1 (1, d) = G

(3)
2 (1, d)G

(3)
1 (1, d) = G

(3)
1 (1, d)2.

In the case n is even (α
d

)n+1

2n
=
(α
d

)
2n

(α
d

)
2

and (α
d

)2

2n
=
(α
d

)
n
,

so the Davenport-Hasse relation implies that

G
(2n)
1 (1, d)G

(2n)
n+1(1, d) = G

(n)
1 (1, d). (3.8)

For example, if n = 2 this is the trivial relation

G
(4)
1 (1, d)G

(4)
3 (1, d) = G

(2)
1 (1, d) = 1.

Our main tool in establishing the analytic continuation of the Zi(s, w),
i = 1, 2, will be
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Proposition 3.1 For <s,<w > 1, both Z1(s, w) and Z2(s, w) converge ab-
solutely. Furthermore, each has an analytic continuation for any fixed w as
long as <s is sufficiently large. In fact the following relations hold. For n
odd

Z1(s, w) = Z2(s+ w − 1/2, 1− w)

= ζ(2ns+ nw − n)
∑
d̃0

G(χ
(n)

d̃0
)L(1− w, (χ(n)

d̃0
)2)

(Nd̃0)s+w/2(Nd0)(w−1)/2

×
∏

(p,d0)=1

1 +
χ

(n)

d̃0
(p)

Npns+(n−1)w/2−(n−1)/2


×

∏
(p,d0)=1

1−
χ

(n)

d̃0
(p)

Npns+(n+1)w/2−(n−1)/2

 ,

and for n even

Z1(s, w) = Z2(s+ w − 1/2, 1− w)

= ζ(2ns+ nw − n)
∑
d̃0

G((χ
(2n)

d̃0
)n+1)L(1− w, χ(n)

d̃0
)

(Nd̃0)s+w/2(Nd0)(w−1)/2

×
∏

(p,d0)=1

(
1− 1

Np2ns+nw−n+1

)
.

Here G(ψ) refers to the Gauss sum associated to the character ψ, normal-
ized to have absolute value equal to 1. The sums over d0 and d̃0 are defined
as follows. If n is odd, then we write d̃0 = e1e

n
2 . Here e1 is nth power free, e2

is the square free product of all p dividing e1 such that the exact power of
p dividing e1 is even and we sum over all such e1. If n is even then we sum
over all d̃0 that are 2nth power free, with the proviso that if p|d̃0 then an odd
power of p must exactly divide d̃0. We denote by d0 the product of all the
distinct primes dividing d̃0.

Proposition 3.1 is proved by taking s, w to have large real parts, and in-
terchanging the order of summation in Z1(s, w). A careful analysis reduces
Z1(s, w) to the expressions on the right hand side above, but with the func-
tional equation applied to the L-series in the numerator (i.e. the argument
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of the L-series is w rather than 1−w.) The sum over d then converges abso-
lutely for any fixed w as long as the real part of s is sufficiently large. If one
applies the functional equation to the L-series and uses the the Davenport-
Hasse relation the sum is transformed into that given in the Proposition.
Similarly, if one takes Z2(s + w − 1/2, 1 − w), where <(1 − w) and <s are
sufficiently large to insure absolute convergence, and interchanges the order
of summation, the right hand side of the Proposition is obtained directly.

One can alternatively take Z1(s, w), Z2(s, w) and sum over d on the inside.
If one does this, with the real parts of s, w sufficiently large, then one obtains

Z1(s, w) =
∑
m

D
(2n)
1 (s,m2)

Nmw
(3.9)

and also

Z2(s, w) =
∑
m

D
(n)
n−1(s,m

2)

Nmw
(3.10)

for n odd and

Z2(s, w) =
∑
m

D
(2n)
n−1(s,m2)

Nmw
(3.11)

for n even.
Applying the relations (3.9), (3.10), (3.11) and the functional equation

(2.2) one obtains the following

Proposition 3.2 For fixed s the series expressions (3.9), (3.10), (3.11) con-
verge absolutely as long as the real part of w is sufficiently large. In the range
of absolute convergence the normalized series Z̃1(s, w), Z̃2(s, w) defined in
(3.4),(3.5) satisfy

Z̃1(s, w) = Z̃1(1− s, w + 2s− 1)

and
Z̃2(s, w) = Z̃2(1− s, w + 2s− 1)

We are now in a position to obtain the analytic continuation of Z̃1(s, w)
and Z̃2(s, w). First let us clear the poles by defining

Ẑi(s, w) = Pi(s, w)Z̃i(s, w) (3.12)
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for i = 1, 2, where

P1(s, w) = (s− 1

2
− 1

2n
)(s− 1

2
+

1

2n
)(w)(w − 1)(w + 2s− 2)(w + 2s− 1)

× (s+ w − 1− 1

δn
)(s+ w − 1 +

1

δn
)

(3.13)
and

P2(s, w) = P1(s+ w − 1/2, 1− w).

The factors in P are chosen to clear the poles in s and w in the region of
absolute convergence, and also to satisfy Pi(s, w) = Pi(1 − s, w + 2s − 1)
for i = 1, 2. Thus, in addition to being analytic in the region of absolute
convergence,

Ẑi(s, w) = Ẑi(1− s, w + 2s− 1)

for i = 1, 2 and
Ẑ1(s, w) = Ẑ2(s+ w − 1/2, 1− w).

For i = 1, 2, Ẑi(s, w) converges absolutely in the region <s,<w > 1. The
functional equation in s given above in (2.2) implies a polynomial bound in
|m|s for the Dirichlet series in the numerators of (3.9), (3.10), (3.11) when
<(s) < 0. Consequently, the Phragmen-Lindelöf principle implies a bound
for these series when 0 ≤ <(s) ≤ 1. Thus Ẑi(s, w) can be extended to a
holomorphic function in the region in C2 given by

{(s, w) | <(s) ≤ 0,<(w) > −2<(s) + 2} ∪ {(s, w) | <(s) > 1,<(w) > 1}
∪ {(s, w) | 0 ≤ <(s) ≤ 1,<(w) > −<(s) + 2}

Arguing similarly with the L-functions appearing in the representations of
Zi(s, w) given in Proposition 3.1, the Ẑi(s, w) extend holomorphically to the
region

{(s, w) | 0 ≤ <(w) ≤ 1,<(s) > −<(w)/2 + 3/2}
∪ {(s, w) | <(w) ≤ 0,<(s) > −<(w) + 3/2}.

By Bochner’s theorem, the functions Ẑi(s, w) thus extend analytically to the
convex closure of the union of these regions, which is the region

R1 = {(s, w) | s ≤ 0,<(w) > −2<(s) + 2}
∪ {(s, w) | 0 ≤ <(s) ≤ 3/2,<(w) > −4<(s)/3 + 2}

∪ {(s, w) | 3/2 ≤ <(s),<(w) > −<(s) + 3/2}. (3.14)
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Applying the relation Ẑ1(s, w) = Ẑ2(s + w − 1/2, 1 − w) we see that as
the image of R1 under the map (s, w)→ (s+w−1/2, 1−w) intersects itself,
we can extend both Ẑ1(s, w) and Ẑ2(s, w) to the convex hull of the union of
R1 and its image. This is the half plane

R2 = {(s, w) ∈ C2 | <(w) > −2<(s) + 2}.

Finally, applying Ẑi(s, w) = Ẑi(1− s, w + 2s− 1) for i = 1, 2 and taking the
convex hull of the union of overlapping regions we obtain analytic continua-
tion to C2.

We summarize the above discussion in

Proposition 3.3 The functions Z̃1(s, w) and Z̃2(s, w) defined in (3.4), (3.5)
have an analytic continuation to all of C2, with the exception of certain polar
lines. For Z̃1(s, w) these polar lines are s = 1/2 ± 1/(2n); w = 1, 0; w +
2s− 1 = 1, 0; s+w− 1/2 = 1/2± 1/(δn). For Z̃2(s, w) these polar lines are
s = 1/2± 1/(δn); w = 1, 0; w + 2s− 1 = 1, 0; s+ w − 1/2 = 1/2± 1/(2n).

4 The residue of Z̃1(s, w) at s = 1/2 + 1/(2n)

Now that the analytic properties of Z̃1(s, w) have been established we can
investigate the residue of this function at s = 1/2+1/(2n). By (2.4) we have

Ress=1/2+1/(2n)Z1(s, w) =
∑
m

τ
(2n)
1 (m2)

Nmw+1/(2n)
.

and

Ress=1/2+1/(2n)Z̃1(s, w) = ζ(δnw − δn/2 + δ/2 + 1)ζ(2)
∑
m

τ
(2n)
1 (m2)

Nmw+1/(2n)
.

Consequently we set u = w + 1/(2n) and define

L̃(u) = ζ(δnu− δn/2 + 1)
∑
m

τ
(2n)
1 (m2)

Nmu
. (4.1)

Remark. This is one of the two Dirichlet series of interest to us. We have
chosen to first derive the analytic properties of Z̃1(s, w) and then deduce the

13



analytic properties of L̃(u) by viewing this function as the residue of the
two-variable Dirichlet series. It should be possible to analyze L̃(u) directly
by viewing it as a Rankin-Selberg convolution of the theta function on the
2n-cover of GL(2) with the quadratic theta function, but experience indicates
that the two variable approach is considerably simpler to carry out.

By Proposition 3.3, L̃(u) inherits an analytic continuation to C and a
functional equation relating L̃(u) to L̃(1 − u). Also, L̃(u) is analytic ex-
cept for possible poles at u = 1 + 1/(2n),−1/(2n), 1− 1/(2n), 1/(2n), 1/2 +
1/(δn), 1/2−1/(δn). Using the analytic properties of Z̃1(s, w) corresponding
properties of L̃(u) are derived as follows:

lim
u→1+1/(2n)

(u− 1− 1/(2n))L̃(u)

= lim
u→1+1/(2n)

(u− 1− 1/(2n)) lim
s→1+1/(2n)

(s− 1− 1/(2n))Z̃1(s, u− 1/(2n))

= lim
s→1+1/(2n)

(s− 1− 1/(2n)) lim
w→1

(w − 1)Z̃1(s, w).

Thus we have approached the problem by interchanging the order of two
limits. Using Proposition 3.1 above it is easy to compute that

lim
w→1

(w − 1)Z̃1(s, w) = ζ∗(δns)ζ∗(2ns− n+ 1).

As w = 1 corresponds to u = 1 + 1/(2n), we see that L̃(u) will have a pole
at u = 1 + 1/(2n) (and at u = −1/(2n)) if and only if ζ∗(δns)ζ∗(2ns−n+ 1)
has a pole at s = 1 + 1/(2n). As this is not the case, the potential pole of
L̃(u) at u = 1 + 1/(2n) does not exist.

To investigate the behavior of L̃(u) at u near 1 − 1/(2n) we consider
limw→2−2s Ẑ1(s, w). Applying the functional equations in sequence yields

Ẑ1(s, w) = Ẑ2(s+w−1/2, 1−w) = Ẑ2(3/2−s−w,w+2s−1) = Ẑ1(s, 2−2s−w)

from which we obtain

lim
w→2−2s

Ẑ1(s, w) = −(s− 1

2
− 1

2n
)(s− 1

2
+

1

2n
)(2− 2s)(1− 2s)

× (s− 1− 1

δn
)(s− 1 +

1

δn
)ζ∗(δn− δns)ζ∗(2ns− 1). (4.2)

For behavior of L̃(u) at u near 1/2+1/(δn), we likewise evaluate the limit
limw→1+1/(δn)−s Ẑ1(s, w). Applying the functional equations in sequence we

14



obtain
Ẑ1(s, w) = Ẑ2(s+ w − 1/2, 2− 2s− w).

Taking the limit as w → 1 + 1/(δn)− s yields

lim
w→1+1/(δn)−s

Ẑ1(s, w) = (s− 1

2
− 1

2n
)(s− 1

2
+

1

2n
)(1 +

1

δn
− s)( 1

δn
− s)

× (s− 1 +
1

δn
)(s+

1

δn
)(

2

δn
)ζ∗(2)ζ∗(n+ 1− 2ns)

× lim
s+w− 1

2
→ 1

2
+1/(δn)

(s+ w − 1− 1

δn
)Z2(s+ w − 1

2
, 2− 2s− w))

= (s− 1

2
− 1

2n
)(s− 1

2
+

1

2n
)(1 +

1

δn
− s)( 1

δn
− s)(s− 1 +

1

δn
)

× (s+
1

δn
)(

2

δn
))ζ∗(2)ζ∗(n+ 1− 2ns)M

(δn)
1+(δ−1)n(1− s). (4.3)

Here

M
(k)
j (u) =

∑ τ
(k)
j (m)

Nmu
(4.4)

denotes the Mellin transform of the theta function on the k-fold cover of
GL(2), with the underlying residue symbol being the j-th power of the stan-
dard one.

We have thus far computed Ẑ1(s, 2 − 2s) and Ẑ1(s, 1 + 1/(δn) − s). We
will now evaluate these expressions as s approaches 1/2 + 1/(2n). Applying
the relations (4.2) and (4.3) (and continuing to ignore primes dividing 2n)
we obtain for n = 2:

Ẑ1(
3

4
,
1

2
) = κ2, (4.5)

and for n = 3:

Ẑ1(
2

3
,
2

3
) = κ2, (4.6)

where κ = Ress=1ζ
∗(s). For general n ≥ 4 we obtain

Ẑ1(
1

2
+

1

2n
, 1− 1

n
) = ζ∗

(
δ(n− 1)

2

)
ζ∗(n). (4.7)

Translating back to L̃(u), defined in (4.1) we see that as u→ 1− 1/(2n), for
n = 2

L̃(u) ∼ κ2

(u− 3/4)2
, (4.8)
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for n = 3

L̃(u) ∼ κ2

(u− 5/6)2
, (4.9)

and for general n ≥ 4

L̃(u) ∼
ζ∗
(
δ(n−1)

2

)
ζ∗(n)

(u− 1 + 1/(2n))
. (4.10)

In a similar manner we obtain, as u→ 1/2 + 1/(δn), for n ≥ 4

L̃(u) ∼ ζ∗(2)M
(δn)
1+(δ−1)n

(
1

2
− 1

2n

)
,

where M
(δn)
1+(δ−1)n(1 − s) is defined in (4.4). Note that when n = 2, n = 3,

the two poles coincide and create a double pole, while for all n ≥ 4 these
poles are separate. This may be related to the fact that the conjecture can
be made consistent with the Hecke relations in only these two cases.

5 The gamma factors of L̃(u) and a conjecture

Recall the gamma factors associated to D̃
(n)
1 (s,m2) defined in (2.1) as Γn(s):

Γn(s) = Γ

(
s− 1

2
+

1

n

)
Γ

(
s− 1

2
+

2

n

)
· · ·Γ

(
s− 1

2
+
n− 1

n

)
.

Applying the functional equations of Proposition 2.2 in succession one sees
that the gamma factors associated to Z̃1(s, w) are

Γ2n(s)Γδn(s+ w − 1/2)Γ(w)Γ(w + 2s− 1).

Taking the residue at s = 1/2 + 1/(2n) it follows that the gamma factors
associated to L̃(u) are

Γδn(u)Γ(u− 1

2n
))Γ(u+

1

2n
). (5.1)

Recall that

M
(k)
j (u) =

∑ τ
(k)
j (m)

Nmu
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denotes the Mellin transform of the theta function on the k-fold cover of
GL(2), where the underlying residue symbol is raised to the j power. In
contrast to the situation with L̃(u) it is easy to verify directly that the gamma

factors associated to M
(k)
j (u) are Γ(u− 1/(2k))Γ(u + 1/(2k)). We therefore

define

M̃
(k)
j (u) = Γ(u− 1

2k
)Γ(u+

1

2k
)M

(k)
j (u).

It is now apparent that the gamma factors associated to L̃(u), given in (5.1),

factor into those associated to D̃
(δn)
1 (u, 1), namely Γδn(u), times those asso-

ciated to M̃
(n)
j (u). (This is true for any j.)

Recall that for n ≥ 4 the poles of L̃(u) are simple and located at

u = 1− 1/(2n), 1/(2n), 1/2 + 1/(δn), 1/2− 1/(δn),

while in the cases n = 2, 3 they combine into double poles located at u =
3/4, 5/6. On the other hand D̃

(δn)
1 (u, 1) has simple poles at 1/2+1/(δn), 1/2−

1/(δn), while it is easily verified that M̃
(n)
j (u) has simple poles at u = 1 −

1/(2n), 1/(2n).
Because of these observations, it is plausible to conjecture that for some

value of j, L̃(u) factors into a product M̃
(n)
j (u)D̃

(δn)
1 (u, 1). We can investigate

this more closely, by using the information provided by the Hecke operators,
and conclude that a likely value for j is j = 1. For example, after canceling
gamma factors we might tentatively conjecture that the following Dirichlet
series identities hold: for n odd

ζ(nu− n/2 + 1)
∑ τ

(2n)
1 (m2)

Nmu
= ζ(nu− n/2 + 1)

∑ τ
(n)
1 (m)

Nmu
·
∑ G

(n)
1 (1, d)

Ndu

and for n even

ζ(2nu− n+ 1)
∑ τ

(2n)
1 (m2)

Nmu
= ζ(2nu− n+ 1)

∑ τ
(n)
1 (m)

Nmu
·
∑ G

(2n)
n+1(1, d)

Ndu
.

Specializing to the case n = 2 and canceling ζ(4u − 1) this reduces to the
relation ∑ τ

(4)
1 (m2)

Nmu
=
∑ τ

(2)
1 (m)

Nmu
·
∑ G

(4)
3 (1, d)

Ndu
.

Write m = m0m
2
1, where m0 is square free and m1 is unrestricted. Then by

the known properties of τ
(4)
1 it follows that

τ
(4)
1 (m2

0m
4
1) = G

(4)
1 (1,m0)Nm

1/2
1
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and thus the left hand side of the expression above equals

∑ τ
(4)
1 (m2

0m
4
1)

Nmu
0Nm2u

1

= ζ(2u− 1/2)
∑ G

(4)
3 (1, d)

Ndu
.

As τ
(2)
1 (m0m

2
1) = Nm

1/2
1 ifm0 = 1 and vanishes otherwise, and asG

(4)
3 (1, d) =

G
(4)
1 (1,m0) if d = m0 is square free and vanishes otherwise, the identity holds

in the case n = 2.
The case n = 3 has already been discussed in Section 2 after the formu-

lation of Conjecture 2.1. When n ≥ 4, the highest coefficient index before
periodicity which comes into play is Np2n−2. At this index the Hecke rela-
tions confirm an equality of the left and right hand sides. Unfortunately they
fail to confirm this equality at lower indices. The conjecture may thus need a
mild modification to hold for n ≥ 4, or it may fail completely. The question
remains open.

6 A proof of the conjecture in the case of a

rational function field and n odd

In this section we will work over the rational function field Fq(T ). We will
make crucial use of the paper [Hof92], in the sense that we will refer to it
for all notation and a number of results. We require q ≡ 1 mod n, and for
convenience, we also suppose that q ≡ 1 mod 4. The conjecture is provable
in this case because over a function field any Dirichlet series with a functional
equation (with finite conductor) must be a ratio of polynomials. The polar
behavior of the Dirichlet series determines the denominator, and a finite
amount of information about the early coefficients is enough to determine
the numerator.

Let n ≥ 3 be odd. The function field analog of the series Z1(s, w) above
is the Rankin-Selberg convolution of E(2n)(z, u) with θ(2)(z). In effect the
theta function picks off the coefficients of the Eisenstein series with square
index and assembles them in a Dirichlet series. The functional equation and
polar behavior of the Dirichlet series are determined by the corresponding
functional equations and polar behavior of the Eisenstein series in the inte-
gral: ∫

E(2n)(z, u) θ(2)(z)E(n)(z, v) dµ(z),
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where the integration is taken over a truncated fundamental domain. Al-
though the integrand is not of rapid decay, the technique of regularizing the
integral provides the functional equation and polar behavior of a Mellin trans-
form of the part of the product E(2n)(z, u) with θ(2)(z) that is of rapid decay.
See [Z81] an exposition of this. The key point for us is that all the necessary
information about the Mellin transform is determined by these properties.

Denoting this Mellin transform as R(u, v), we have explicitly

R(u, v) =

∫
ord(Y )≡0 mod n

∑
c(2n)
m (u, Y ) τ (2)(m,Y ) |Y |2v−2 d×Y, (6.1)

where the sum is over m ∈ A := Fq[T ] such that −2− degm + 2 ordY ≥ 0.

Formulas for c
(2n)
m are given in [Hof92]. In particular, if we let

Dm(u, i) =
∑

deg c≡i mod n

|c|−2ug
(2n)
1 (m, c),

then
c(2n)
m (u, Y ) = q|Y |2−2uD̃m(u, Y ),

with

D̃m(u, Y ) = Dm(u, 0)

(
1 + (1− q−1)

∑
1≤k≤2nγ−2−degm

k≡0 mod n

qk(1−2u)

)
+Dm(u, 1 + degm) q2nγ−2−degmg−1−degm(µm, T ) q−2(2nγ−1−degm)u. (6.2)

Here µm denotes the leading coefficient of m. Note that D̃m(u, Y ) is thus a
non-zero constant plus a sum of positive powers of q−2u that are multiples of
n.

Let $ = 1/T be the local uniformizer. The τ (2)(m,Y ) are the Fourier
coefficients of the quadratic theta function, described by

τ (2)(m,Y ) =

{
|Y |1/2 m = m2

0 with ord($−2m2
0Y

2) ≥ 0

0 otherwise.

Substituting in to the integral (6.1), we can do the Y integration, obtaining

R(u, v) = c
∑

nγ≥1+degm0

q(2u−2v−1/2)nγD̃m2
0
(u,$nγ),
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where c is a nonzero constant.
Letting s = 2u − 1/2, w = 2v − 2u + 1/2, and denoting by R̃(u, v), the

product of R(u, v) by the normalizing zeta and gamma factors of the two
Eisenstein series, we have, corresponding to Z̃1(s, w),

R̃(u, v) = cqq
n−1−2nsζ∗(2ns− n+ 1)qn−1−ns−nwζ∗(n(s+ w − 1) + 1)

×
∑

nγ≥1+degm0

q−wnγD̃m2
0
(s/2 + 1/4, $nγ), (6.3)

where cq is a non-zero constant.
The functional equations of the Eisenstein series imply that Z̃1(s, w) =

R̃(u, v) is a rational function of x = q−s and y = q−w. Also there are, at
most, simple poles at

s = 1/2±1/2n, w = 0, 1, w = 2−2s, w = 1−2s, s+w−1/2 = 1/2±1/n.

We therefore write

Z̃1(s, w) =
P (x, y)

D(x, y)

with

D(x, y) = (1− yn)(1− qnyn)(1− qn−1x2n)(1− qn+1x2n)

(1− qn+1xnyn)(1− qn−1xnyn)(1− qnx2nyn)(1− q2nx2nyn). (6.4)

Note from (6.3) that Z̃1(s, w) is of the form x2n(xy)nyn times a power
series in xn, yn. Also, the functional equations of the Eisenstein series imply
that

Z̃1(s, w) = Z̃1(s, 2− 2s− w).

Combining this information with (6.4), we conclude that P (x, y) is of the
form

P (x, y) = x3ny2n

M∑
i=0

N∑
j=0

Bijx
inyjn.

and satisfies the functional equation

P (x, y) = q6nx6ny6nP (x, q−2x−2y−1).

To go farther, we consider the residue

R(y; q) = lim
x2n→q−n−1

(1− qn+1x2n)Z̃1(s, w) =
P (q−1/2−1/2n, y)

D(y)
,
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where

D(y) = (1− yn)(1− qnyn)(1− q−2)(1− q(n+1)/2yn)(1− q(n−3)/2yn)

× (1− q−1yn)(1− qn−1yn). (6.5)

Notice that R(y; q) is a power series in yn beginning with the power y2n.
Also, the functional equation above specializes to

P (q−1/2−1/2n, y) = q9nP (q−1/2−1/2n, y−1q−1+1/n).

Let us introduce for clarity the (admittedly unnecessary) variable t =
yq−1/2n. For convenience, write R̃(t; q) = R(y; q), P̃ (t) = P (q−1/2−1/2n, y),
and D̃(t) = D(y), so

R̃(t; q) = P̃ (t)D̃(t).

The functional equation above in y becomes one sending t→ q−1t−1 and

P̃ (t) = t6nq3nP̃ (q−1t−1).

Thus if P̃ (t) =
∑M

2 Bit
ni, then the functional equation implies that M = 4

and B2 = q−nB4. Also recall that B2 is nonzero. Thus we arrive at the
expression

P̃ (t) = B2t
2n(1 +B′3t

n + qnt2n)

for certain coefficients B2, B
′
3.

Finally, we have that the residue of P̃1(t) is 0 at both t−n = qn+1/2 and
at t−n = q−1/2. This forces

1 +B′3t
n + qnt2n = (1− qn+1/2tn)(1− q−1/2tn).

Cancelling these two factors from the denominator D̃(t), we arrive at

Theorem 6.1 The function R̃(t; q) is of the form

R̃(t; q) =
cn,qt

2n

(1− q1/2tn)(1− qn/2+1tn)(1− qn/2−1tn)(1− qn−1/2tn)
,

where cn,q is a nonzero constant.

Now we compare this to the Mellin transform computed in [Hof92]. The
function Mn(u; q) introduced in (5.2) there is defined as the Mellin transform
of the theta function on the n-fold cover of GL(2) over the function field
Fq(T ). The Mellin transform introduces a variable w. Continuing to let
y = q−w, we have
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Proposition 6.2 [Hof92] For a certain nonzero constant c′n,q, one has

Mn(y; q) =
c′n,qy

n

(1− qyn)(1− q2n−1yn)
.

Here Mn has functional equation

Mn(y; q) = Mn(y−1q−2; q).

We also find the Dirichlet series part Dn(t; q) of the Fourier coefficient
of the n-th order metaplectic Eisenstein series in [Hof92], (5.2). From this
equation, we have

Dn(t; q) =
tn

(1− qn−1tn)(1− qn+1tn)
,

with t = q−2s. This function has functional equation under s 7→ 1− s.
Let us compare these three expressions. We have

Dn(tq−1/2; q) =
q−n/2tn

(1− qn/2−1tn)(1− qn/2+1tn)
.

Also, suppose that q is an even power of the residue characteristic. Then we
may compute the Mellin transform of the theta function over Fq1/2(T ). If we
double the Mellin transform variable w to 2w, then the resulting expression
may still be expressed in terms of y = q−w = (q1/2)−2w. This is given by

Mn(y; q1/2) =
c′
n,q1/2y

n

(1− q1/2yn)(1− qn−1/2yn)
.

We thus find that, after normalizing so that the first coefficient of every power
series equals 1,

Theorem 6.3 Suppose that q is an even power of the residue characteristic.
Then

R̃(t; q) = Mn(t; q1/2)Dn(tq−1/2; q).

In other words, the rational polynomial on the left hand side that equals
the Rankin Selberg convolution of the Eisenstein series on the 2n-fold cover
with the quadratic theta function, factors into the the rational polynomial
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representing the Mellin transform of a theta function on the n-fold cover
times the first Fourier coefficient of the Eisenstein series on the n-fold cover.

This proves the conjecture in the case of the rational function field when
n is odd. Unfortunately the conjecture is certainly not true over a num-
ber field for n ≥ 5, as observed previously. Thus the special nature of the
rational function field seems to give rise to too many simplifications! In
particular, the numerators on both sides are (after cancellations) essentially
trivial in this case. In a function field of higher genus, the numerators would
be polynomials, and further structure would be revealed. It remains a very
interesting open question to follow through the methods of this section in
the case of any extension of the rational function field and to see what the
actual relationship is between R̃,Mn and Dn.
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