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Abstract. We provide formulas for various bases of spherical Whittaker functions on
the n-fold metaplectic cover of GLr over a p-adic field and show that there is a basis of
symmetric functions in the complex parameter. In addition we relate a specific spherical
Whittaker function to the p-power part of the Weyl group multiple Dirichlet series for
the root system of type Ar−1 constructed from nth order Gauss sums. We also show
that the zonal spherical functions can be computed explicitly in terms of Hall-Littlewood
polynomials as in Macdonald’s formula for GLr.
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1. Introduction

In this work we give formulas for the spherical Whittaker functions on the n-fold meta-
plectic cover of GLr over a p-adic field. Our formulas generalize the formula of Shintani
and Casselman-Shalika which deals with the nonmetaplectic case (n = 1). Further we give
an explicit relationship between p-adic metaplectic Whittaker functions and the local parts
of Weyl group multiple Dirichlet series associated to root systems of type Ar−1 constructed
by Chinta and Gunnells [12]. Weyl group multiple Dirchlet series, first introduced in [4],
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are Dirichlet series in several complex variables whose coefficients are built out of Gauss
sums and the nth order power residue symbol.

Recently, Brubaker, Bump and Friedberg [5, 6] have given an alternative construction of
Weyl group multiple Dirichlet series of type Ar−1, thereby confirming a conjecture made in
[7]. Moreover, in [5], they have shown that their series coincide with the global Whittaker
function of an Eisenstein series on the n-fold cover of GLr over a number field containing the
2n-th roots of unity. The constructions of [5] and [6] involve a combinatorial description in
terms of crystal graphs, while the construction of [12], generalizing an approach introduced
in [13], involves averaging with respect to a certain Weyl group action. For this reason,
the two approaches have not yet been shown to produce the same multiple Dirichlet series
except in certain very special cases, see e.g. [11]. The results of the present work combined
with the work of P. McNamara [21] lead to the resolution of this problem, as we now
describe.

Using methods completely different from ours, McNamara also gives a formula for the p-
adic metaplectic Whittaker functions on the n-fold cover of GLr (in fact of SLr but the two
are comparable). As mentioned above, we use our formula to show that (a suitably chosen)
spherical Whittaker function coincides with the p-part of the Weyl group multiple Dirichlet
series constructed in Chinta-Gunnells [12]. This is the content of Theorem 4 in Section 9.
On the other hand, McNamara’s formula for the spherical Whittaker function shows that
it coincides with the local part of the series constructed by Brubaker-Bump-Friedberg in
[5]. Consequently, the approaches of Chinta-Gunnells and Brubaker-Bump-Friedberg do
in fact produce the same series.

We now sketch the methods used in the proof of our generalization of the formula
of Shintani and Casselman-Shalika. Let n be a positive integer and let F be a non-
archimedean local field that contains a primitive nth root of unity. For every c ∈ Z/nZ
Kazhdan and Patterson associated in [17] the c-twisted n-fold metaplectic cover G̃Lr(F )(c)

of GLr(F ). It is a central extension of GLr(F ) by the group µn(F ) of nth roots of unity in
F. It is not, in general, the group of F points of an algebraic group defined over F but it is
an `-group in the sense of [3]. We assume throughout the paper that n is relatively prime
to the residual characteristic of F. In a global setting over a number field this assumption
is satisfied at almost all places.

Zonal spherical functions for a p-adic reductive group were computed explicitly by Mac-
donald [20]. In [9], Casselman reproved Macdonald’s formulas using the theory of unram-
ified principal series representations. This point of view was taken further by Casselman
and Shalika in [10] where they explicitly compute the spherical Whittaker functions for a
p-adic reductive group, generalizing Shintani’s formula for GLr [29]. The method of Cas-
selman and Shalika has since been applied in many cases to compute spherical functions
on p-adic symmetric spaces or more generally on spherical varieties (e.g. [15], [24], [27]).
See also [8], which extends the method to the metaplectic double cover of Sp2r(F ).

The main result of this work, specialized to the case n = 1, recovers the Shintani,
Casselman-Shalika formula for the spherical Whittaker functions of GLr(F ) in terms of
the symmetric Schur polynomials. For general n, a central difficulty is the failure of
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uniqueness of Whittaker functionals (and therefore of spherical Whittaker functions of a
fixed Hecke eigenvalue). In [14], Y. Hironaka computed explicitly the spherical functions
on the space of non-singular Hermitian matrices with respect to an unramified quadratic
extension of p-adic fields. This is a case where multiplicity one fails. Hironaka’s approach
to the Casselman-Shalika method in case of multiplicities (see §1 of [ibid.]) is our guideline
for this work. (See [25] for an earlier treatment of multiplicities by different methods.)

Roughly speaking, a spherical function can be expressed as the value of a certain linear
form applied to translates of the unramified vector in an unramified principal series repre-
sentation. The idea behind the Casselman-Shalika method is to reduce the computation
for the value of the linear form on a translate of the element invariant under the maximal
compact subgroup to the computation of simpler expressions for elements invariant under
a smaller open compact — the Iwahori subgroup. There are three main steps in carrying
out the method.

The first has to do solely with the group and not with the particular linear form we
consider. It is an expansion of the unramified element of a principal series representation
in terms of a “well-chosen” basis of the Iwahori invariant subspace — the Casselman-
Shalika basis. In [26], Sakellaridis provides a formula for spherical functions in the general
setting of spherical varieties for a split reductive group (this, however, does not contain our
case as long as n > 1). His characterization of the Casselman-Shalika basis simplifies the
computation. In Subsection 3.3 below we take this approach and construct the Casselman-

Shalika basis for the unramified principal series of G̃L
(c)
r (F ).

The second step is to obtain Weyl group functional equations between the spherical
functions. The unramified principal series representations are parameterized by a vari-
able, say s, in some complex variety on which a related Weyl group acts. Crucial to the
computation of the spherical functions is to relate explicitly between the spherical func-
tions associated to s and those associated to ws for any Weyl element w. When n = 1,
the space of Whittaker functionals of an unramified principal series representation is one
dimensional. There is then a one dimensional space of spherical Whittaker functions for
a given parameter s (i.e. for a fixed Hecke eigenvalue) and the functional equations are
therefore scalar valued. For general n the space of Whittaker functionals for an unramified

principal series representation of G̃L
(c)
r (F ) is of dimension nr

gcd(n,2rc+r−1)
. This complicates

the computation of the functional equations. Once a basis of Whittaker functionals for
any parameter s has been fixed, there is a matrix associated to any Weyl element w that
expresses the basis for ws in terms of the basis for s. Such a functional equation is provided
in [17, Lemma 1.3.3]. We present it again in Section 5 below, correcting some minor errors
already pointed out in [1]. It is further pointed out in [ibid.] that in order to justify the
computation of Kazhdan-Patterson one has to choose the metaplectic group defined by a
block compatible 2-cocycle of GLr(F ) as constructed in [2].

The third step is the evaluation of the linear forms on translates of the Iwahori invariant
functions in the Casselman-Shalika basis. This, in our case, is not much more complicated



4 GAUTAM CHINTA AND OMER OFFEN

than in the n = 1 case and is the content of Lemma 7. This lemma leads in turn to Theo-
rems 1 and 2 (at the ends of Sections 4 and 6, resp.) which give two different expressions
for the spherical Whittaker functions as a sum over the Weyl group.

Once Theorem 2 has been established, it is a simple matter to relate the spherical
Whittaker functions to the local parts of the type A Weyl group multiple Dirichlet series
constructed by Chinta and Gunnells. After a short preparation in Section 8 this is done in
Section 9. Along the way, in Section 7 we show that a basis of spherical Whittaker functions

can be chosen, so that their values at each point of G̃L
(c)
r are symmetric functions of the

complex variable s. The Chinta-Gunnells local component is not symmetric. Nevertheless,
the functional equation satisfied by Eisenstein series suggests that such a basis may play a
role in the global theory. Finally in Section 10 we show that the zonal spherical functions
can be computed explicitly in terms of Hall-Littlewood polynomials as in Macdonald’s
formula for GLr. Though zonal spherical functions are not the main object of study in this
paper, we include this short section as a further application of the utility of the Casselman-
Shalika basis computed in Subsection 3.3.

We now provide a brief description of McNamara’s work [21]. McNamara directly com-
putes the spherical Whittaker function as an integral of the spherical vector φK in the
principal series representation over the unipotent group U. He decomposes U into cells on
which φK is constant. Remarkably, he shows a bijection between this collection of cells and
elements of a canonical crystal basis for the quantized universal enveloping algebra Uq(g),
which then allows him to reproduce the Gelfand-Tsetlin description of Brubaker-Bump-
Friedberg [5] for the p-part of a type A Weyl group multiple Dirichlet series. Equating
our formula for the spherical Whittaker function (given in Theorem 2) with his produces
a purely combinatorial identity: a sum over a Weyl group equals a sum over a crystal
basis. It is striking that to date the only means of proving this identity is via the theory

of Whittaker functions on the metaplectic group G̃L
(c)
r (F ). It would be desirable to have

a more direct combinatorial proof of this identity. The insight gained by such a proof may
allow us to generalize the crystal basis description to other root systems.

Finally we remark on prospects for extending our work to a more general setting. The
Kazhdan-Patterson theory of principal series representations and intertwining operators
for the metaplectic cover of GLr plays a key role in our current work. This theory has
recently been extended to metaplectic coverings of reductive groups of general type by
Savin [28], Loke-Savin [19] and McNamara [22]. Using this work we expect to obtain
analogous formulas for spherical Whittaker functions associated to any root system.

Acknowledgments The authors thank Yiannis Sakellaridis and Peter McNamara for
making their preprints available to us. We also thank the referee for helpful suggestions.

2. Notation and preliminaries

Let F denote a non archimedean local field, O the ring of integers of F, p the maximal
ideal of O, q the size of the residue field O/p of F and $ a uniformizer in p. Let |·|F be
the normalized absolute value on F and let v : F → Z ∪ {∞} be the valuation on F such
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that |x|F = q−v(x). Denote by F× the multiplicative group of F and for every integer n let

F×n = {xn : x ∈ F×}.

Fix a nontrivial character ψ of F and let dx be the self-dual Haar measure of F with
respect to ψ. We shall assume throughout that ψ has conductor O. Thus vol(O) = 1. Fix a
positive integer r and let G = GLr(F ). The Iwasawa decomposition gives G = BK = AUK
where U is the group of upper triangular unipotent matrices in G, A the group of diagonal
matrices in G, B = AU the standard Borel subgroup of upper triangular matrices in G
and K = GLr(O) the standard maximal compact subgroup of G. We denote by ψU the
character of U defined by

ψU(u) = ψ(u1,2 + · · ·+ ur−1,r), u = (ui,j) ∈ U.

Denote by W the group of permutation matrices in G and identify it with the Weyl group
of G. We will also identify W with the group of permutations of {1, . . . , r} via

w = (δi,w(j)).

Let

Φ = {(i, j) : 1 ≤ i, j ≤ r, i 6= j}
be the root system associated with G. It is a root system of type Ar−1 with Weyl group
W. The action of W on Φ is given by w(i, j) = (w(i), w(j)). Let

∆ = {(i, i+ 1) : i = 1, . . . , r − 1}

be the set of simple roots with respect to B. We will sometimes find it convenient to think
of the roots as embedded in an r-dimensional lattice Λ which we identify with Zr. Under
this embedding the simple root (i, j) corresponds to the vector ei − ej ∈ Λ, where the ei
are the standard basis vectors in Λ. The action of W on Λ via permutation matrices is
compatible with this embedding and the action of W on Φ.

If i < j the root α = (i, j) is positive and we write α > 0. Otherwise we write α < 0. Let

Φ−(w) = {α > 0 : w−1α < 0}.

and let `(w) = |Φ−(w)| be the length of the permutation w. If wα denotes the simple
reflection associated to α ∈ ∆ then

`(wαw) =

{
`(w) + 1 α 6∈ Φ−(w)

`(w)− 1 α ∈ Φ−(w).

Denote by w0 ∈ W the longest Weyl element, i.e. the unique w ∈ W that takes all
positive roots to negative roots. For every root α ∈ Φ let uα : F → G be the associated
one parameter subgroup and let Uα be its image. If α > 0 then Uα is a subgroup of
U . Otherwise Uα is a subgroup of the group U of lower triangular unipotent matrices.
For every w ∈ W we denote by Uw the group generated by Uα, α ∈ Φ−(w). Then, the
imbedding of Uw in U defines a bijection

Uw ' (U ∩ wUw−1)\U.
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The Haar measure on Uα will be taken according to the isomorphism with F. On Uw (and in
particular on U = Uw0) we will use accordingly the product Haar measure. It is normalized
by the requirement that

vol(Uw ∩K) = 1.

2.1. The metaplectic n-fold covers of GLr. Fix a positive integer n and let

µn(k) = {x ∈ k : xn = 1}
be the group of nth roots of unity in a field k. Assume from now on that F is such that
|µn(F )| = n and let ( , ) = ( , )F,n : F× × F× → µn(F ) be the nth order Hilbert symbol.
It is a bilinear form on F× that defines a nondegenerate bilinear form on F×/F×n and
satisfies

(x,−x) = (x, y)(y, x) = 1, x, y ∈ F×.
In particular (x,−1) = (x, x) ∈ {±1} is a sign which is also an nth root of unity (and
therefore always equals 1 if n is odd). We denote by % = %n,F the sign determined by

% = ($,$) = ($,−1).

Associated to every 2-cocycle σ : G × G → µn(F ) there is a central extension G̃ of G by
µn(F ) satisfying an exact sequence

1 −→ µn(F )
ι−→ G̃

p−→G −→ 1.

We call G̃ a metaplectic n-fold cover of G. As a set, we can realize G̃ as

G̃ = G× µn(F ) = {〈g, ζ〉 : g ∈ G, ζ ∈ µn(F )}.
The embedding ι and the projection p are given by

ι(ζ) = 〈e, ζ〉 and p(〈g, ζ〉) = g

where e denotes the identity element of G. The multiplication is defined in terms of σ as
follows,

〈g1, ζ1〉 〈g2, ζ2〉 = 〈g1g2, ζ1ζ2 σ(g1, g2)〉 .
For any subset X ⊆ G let

X̃ = p−1(X) ⊆ G̃.

We also fix the section s : G→ G̃ of p given by s(g) = 〈g, 1〉. Then for g1, g2 ∈ G we have

s(g1)s(g2) = 〈g1g2, σ(g1, g2)〉 .
For 2-cocycles in the same cohomology class the associated metaplectic coverings are
isomorphic. Kazhdan and Patterson provided in [17] 2-cocycles σ(c) parameterized by
c ∈ Z/nZ that exhaust all cohomology classes (but do not necessarily all lie in different
cohomology classes). They are related by

(2.1) σ(c)(g1, g2) = σ(0)(g1, g2)(det g1, det g2)c, g1, g2 ∈ G.

We take σ(0) = σ
(0)
r to be the block compatible 2-cocycle on G constructed in [2] and let

σ(c) = σ
(c)
r be related to σ

(0)
r by (2.1). It is the unique family of 2-cocycles that satisfies

the three properties (2.2), (2.3) and (2.4) below.
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If r = r1 + · · ·+ rk and gi, g
′
i ∈ GLri(F ) for i = 1, . . . , k then

(2.2) σ(c)
r (diag(g1, . . . , gk), diag(g′1, . . . , g

′
k))

=

[
k∏
i=1

σ(c)
ri

(gi, g
′
i)

]
·

[∏
i<j

(det gi, det g′j)
c+1(det gj, det g′i)

c

]
.

The 2-cocycle σ
(0)
1 is the trivial one, i.e.

(2.3) σ
(c)
1 (x, y) = (x, y)c, x, y ∈ F×.

The 2-cocycle σ
(0)
2 is the one explicitly described by Kubota. That is,

(2.4) σ
(c)
2 (g1, g2) =

(
χ(g1g2)

χ(g1)
,

χ(g1g2)

χ(g2) det g1

)
(det g1, det g2)c

where

χ(g) =

{
c c 6= 0
d c = 0

for g =

(
a b
c d

)
.

Throughout the paper we fix the positive integers r and n and the modulus class c ∈
Z/nZ and let σ = σ

(c)
r . Note that the restriction of σ to A is given by

(2.5) σ(a, a′) =

[∏
i<j

(ai, a
′
j)

]
·
∏
i,j

(ai, a
′
j)
c

for a = diag(a1, . . . , ar) and a′ = diag(a′1, . . . , a
′
r).

The group U splits in G̃. In fact s|U is an imbedding of U in G̃. Furthermore, we have

(2.6) σ(u1g1u2, g2u3) = σ(g1, u2g2), g1, g2 ∈ G, u1, u2, u3 ∈ U.

Note that this implies that for every u ∈ U and b ∈ B̃ we have

(2.7) b s(u) b−1 = s(p(b) u p(b)−1)

and in particular that s(U) is normal in B̃.
We fix the decomposition

n = n1n2 where n1 = gcd(n, 2rc+ r − 1)

that plays a role in the structure of (the center of) G̃. Let

Z = {xe : x2rc+r−1 ∈ F×n}.

Then Z̃ is the center of G̃ (and of B̃) [17, Proposition 0.1.1]. We make the following simple
observation.

Lemma 1. We have

Z = {xe : x ∈ F×n2}.
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Proof. We need to show that F×n2 = {x ∈ F× : x2rc+r−1 ∈ F×n}. If x is an n2th
power then, since n1 divides 2rc + r − 1, it is clear that x2rc+r−1 is an nth power. If

x2rc+r−1 = yn for some y ∈ F× then x
2rc+r−1

n1 y−n2 is an n1th root of unity. Since F contains

a primitive nth root of unity, there exists ζ ∈ F× such that x
2rc+r−1

n1 = (ζy)n2 . Note that
gcd(n2,

2rc+r−1
n1

) = 1 and therefore x is also an n2th power. �

For the rest of this work we assume that |n|F = 1. Under this assumption we have

(2.8) (u1, u2) = 1, u1, u2 ∈ O×.
The group K also splits in G̃. There is a map κ : K → µn(F ) such that g 7→ κ∗(g) =
〈g, κ(g)〉 is a group homomorphism from K to G̃. We denote its image by K∗. The
splitting κ∗ is not unique, but its germ at the identity is. We shall fix κ such that κ∗ is
what Kazhdan-Patterson refer to as the canonical lift of K to G̃. It is characterized by the
property that

(2.9) s|A∩K = κ∗|A∩K , s|W = κ∗|W and s|U∩K = κ∗|U∩K

[17, Proposition 0.1.3]. The topology of G̃ as a locally compact group is determined by
this embedding. For every subgroup K0 of K denote by

K∗0 = κ∗(K0)

its image in K∗. Note that the Iwasawa decomposition of G gives G̃ = s(U)ÃK∗.

2.2. Spherical Whittaker functions. Let ε : µn(F )→ µn(C) be an isomorphism, fixed
once and for all.

Definition 1. Let Q be a subgroup of G. A function f : Q̃→ C is called ε-genuine if

f(ι(ζ) g) = ε(ζ)f(g), g ∈ Q̃, ζ ∈ µn(F ).

Consider the ε-genuine spherical Hecke algebra

Hε(G̃,K∗) = {f : G̃→ C : supp(f) is compact and

f(ι(ζ)k1gk2) = ε(ζ)f(g), k1, k2 ∈ K∗, g ∈ G̃, ζ ∈ µn(F )}.

The Hecke algebra Hε(G̃,K∗) acts on the space C∞,ε(G̃/K∗) of right K∗-invariant, ε-
genuine functions on G̃ by the convolution

(2.10) f ∗ φ(x) =

∫
G

f(s(g))φ(s(g)−1x) dg

where f ∈ Hε(G̃,K∗), φ ∈ C∞,ε(G̃/K∗) and x ∈ G̃.Note that the function g 7→ f(g)φ(g−1x)
on G̃ is ι(µn(F ))-invariant and that the integration is over G ' ι(µn(F ))\G̃.

Definition 2. An ε-genuine spherical Whittaker function on G̃ is an elementW ∈ C∞,ε(G̃/K∗)
so that

W (s(u)g) = ψU(u)W (g), u ∈ U, g ∈ G̃
and W is a common eigenfunction of Hε(G̃,K∗).
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The spherical Whittaker functions on G̃ are the main objects of study of this work.
Our main tool is the Casselman-Shalika method that is based on the theory of unramified
principal series representations and that we now recall.

3. The unramified Principal series of G̃

The unramified principal series representations of G̃ were introduced in [17, §1.1]. We
recall the construction of Kazhdan and Patterson. Consider the subgroups An ⊆ A∗ ⊆ A
defined by

An = {a = diag(a1, . . . , ar) ∈ A : ai ∈ F×n}
and

A∗ = A◦Z where A◦ = {a = diag(a1, . . . , ar) ∈ A : v(ai) ≡ 0(n)}.
The group Ã∗ is what Kazhdan-Patterson called the standard maximal abelian subgroup
of Ã (denoted by H̃∗ in [loc. cit.]). It is normalized by s(W). In fact we have

σ(m,m′) = 1, m, m′ ∈ s(W)A◦.

This follows from the characterization of the block compatible 2-cocycle given in [1, (1.2),
(1.4), (1.5)] and the fact that σ is trivial on A◦ × A◦ (that follows from (2.8) and (2.5)).
This implies that

(3.1) s(w)s(a)s(w)−1 = s(waw−1), w ∈W, a ∈ A∗.
For s = (s1, . . . , sr) ∈ Cr we denote by χs the (non-genuine) character of B̃ defined by

(3.2) χs(〈diag(a1, . . . , ar)u, ζ〉) =
r∏
i=1

|ai|si , ai ∈ F×, u ∈ U, ζ ∈ µn(F ).

Any character of a subgroup A′ of Ã will automatically be considered as a character of
A′ s(U) which is trivial on s(U). Set B∗ = A∗U .

Let ω be an ε-genuine character of ÃnZ̃ and let ω′ be a character of Ã∗ that extends ω.
Define the principal series representation associated to ω by

I(ω′) = indG̃
B̃∗

(ω′).

This is the representation of G̃ by right translations (R(g)ϕ)(x) = ϕ(xg), g, x ∈ G on the
space of functions ϕ : G̃→ C that are right K∗0 -invariant for some open subgroup K0 of K
and which satisfy

ϕ(bg) = (χρω
′)(b)ϕ(g), b ∈ B̃∗, g ∈ G̃ where ρ = (

r − 1

2
,
r − 3

2
, . . . ,

1− r
2

).

Although the realization of the representation I(ω′) does depend on ω′ its equivalence class
is only dependent on ω. The character ω of ÃnZ̃ is called unramified if a 7→ ω(s(an)) is an
unramified character of A, i.e. if ω is trivial on Ãn∩K∗. It is called normalized if in addition
ω|Z̃∩K∗ is trivial. The representation I(ω′) is then called a normalized, unramified, principal

series representation. Every ε-genuine, unramified character ω of ÃnZ̃ can be twisted to a
normalized one, i.e. there is a quasicharacter χ of F× such that ω(χ◦det ◦p) is a normalized
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unramified character of ÃnZ̃ [17, Lemma 1.1.1]. It follows that if ω is unramified then the
associated principal series representation I(ω′) can be twisted to a normalized unramified
one. If ω is an ε-genuine, normalized unramified character of ÃnZ̃ then there exists a
unique extension ω′ of ω to Ã∗ such that ω′|Ã∗∩K∗ = 1 [17, p. 60]. This is referred to as the

canonical extension. The K∗-invariant subspace I(ω′)K
∗

of I(ω′) is then one dimensional
[17, Lemma 1.1.3]. Let ϕK = ϕK(ω′) ∈ I(ω′)K

∗
be normalized by ϕK(s(e) : ω′) = 1. The

normalized spherical section is also given by

ϕK(g : ω′) =

{
(χρω

′)(b) g = bk, b ∈ B̃∗, k ∈ K∗

0 g 6∈ B̃∗K∗.

3.1. Parameterization. Let ω be an ε-genuine, normalized unramified character of ÃnZ̃
and let s = (s1, . . . , sr) ∈ Cr be such that

(3.3) ω(s(a)) =
r∏
i=1

|ai|si , a = diag(a1, . . . , ar) ∈ An.

Note that the entries si of s are only determined by ω modulo 2π
√
−1

n log q
Z. If s ∈ Cr satisfies

(3.3) we say that s is an exponent of ω.

Lemma 2. Let ω be an ε-genuine, normalized unramified character of ÃnZ̃ and let s =
(s1, . . . , sr) ∈ Cr be an exponent of ω. Then there exists a unique ζ ∈ µ2n1(C) satisfying

(3.4) ζn1 = ε(%)
r
2

(2rc+r−1)
(n1−1)n

2

such that

(3.5) ω(s($n2e)) = ζ q−n2(s1+···+sr).

Every pair (s, ζ) with s ∈ Cr and ζ ∈ µ2n1(C) satisfying (3.4) determines uniquely an
ε-genuine, normalized unramified character ωs,ζ of ÃnZ̃ satisfying (3.3) and (3.5). If (t, η)
is another such pair then ωs,ζ = ωt,η if and only if

q−nsi = q−nti , i = 1, . . . , r and ζ q−n2(s1+···+sr) = η q−n2(t1+···+tr).

Proof. It folllows from (2.5) and a simple induction that for every x ∈ F× and integer
m ≥ 0 we have

(3.6) s(xe)m = ι(%)
r
2

(2rc+r−1)v(x)
(m−1)m

2 s(xme).

Applying (3.6) to x = $n2 and m = n1 we get that

s($n2e)n1 = ι(%)
r
2

(2rc+r−1)
(n1−1)n

2 s($ne)

and therefore

ω(s($n2e))n1 = ε(%)
r
2

(2rc+r−1)
(n1−1)n

2 q−n(s1+···+sr).

Thus, ζ = ω(s($n2e)) qn2(s1+···+sr) indeed satisfies (3.4) and the uniqueness of such ζ is
obvious. This proves the first statement of the lemma. Fix a pair (s, ζ) as in the statement
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of the lemma. By Lemma 1 a character ωs,ζ as desired, if it exists, is determined by its re-
striction to s(An) and its value on s($n2e). Therefore the character is uniquely determined
by (s, ζ). We now show that such a character ωs,ζ exists. It follows from Lemma 1 that for

any a ∈ Z̃Ãn there exists u ∈ O×n2 and k ∈ Z such that p(a) ∈ u$n2kAn. Assume that

(3.7) ι(ζ1) s(u1e) s($n2e)k1 s(a1) = ι(ζ2) s(u2e) s($n2e)k2 s(a2) ∈ ÃnZ̃
with ζi ∈ µn(F ), ki ∈ Z, ui ∈ O×n2 and ai = diag(ai1, . . . , a

i
r) ∈ An, i = 1, 2. To show that

ωs,ζ can be well-defined we need to show that

(3.8) ε(ζ1) ζk1q−n2k1(s1+···+sr)
r∏
j=1

∣∣a1
j

∣∣sj = ε(ζ2) ζk2q−n2k2(s1+···+sr)
r∏
j=1

∣∣a2
j

∣∣sj .
Applying the projection p to both sides of (3.7) we have

(3.9) $n2k1u1a1 = $n2k2u2a2.

Comparing valuations of each entry we see that

n2k1 + v(a1
j) = n2k2 + v(a2

j), j = 1, . . . , r.

This implies in particular that

(3.10) q−n2k1(s1+···+sr)
r∏
j=1

∣∣a1
j

∣∣sj = q−n2k2(s1+···+sr)
r∏
j=1

∣∣a2
j

∣∣sj
and that

(3.11) k1 ≡ k2 mod n1.

Without loss of generality we may assume that k2 ≥ k1. From (3.9) and (3.11) we see that
u−1

1 u2 ∈ O×n and

ι(ζ1ζ
−1
2 ) = s($n2e)k2−k1s(u−1

1 u2e)s(a−1
1 a2) = s($n2e)k2−k1s(u−1

1 u2a
−1
1 a2).

Applying (3.6) again it follows that

ζ1ζ
−1
2 = %

r
2

(2rc+r−1)n2
(k2−k1−1)(k2−k1)

2 .

On the other hand

ζk2−k1 = ε(%)
r
2

(2rc+r−1)
(n1−1)n

2
k2−k1
n1 = ε(%)

r
2

(2rc+r−1)n2
(n1−1)(k2−k1)

2 .

Note that

n2
(k2 − k1 − 1)(k2 − k1)

2
= n2

(n1 − 1)(k2 − k1)

2
+ nn1

k2−k1
n1

(k2−k1
n1
− 1)

2

and since %n = 1 we get that

(3.12) ζk2−k1 = ε(ζ1ζ
−1
2 ).

From (3.10) and (3.12) we get (3.8) and the existence of ωs,ζ . The last equivalence condition
of the lemma is now straightforward from the requirements (3.3) and (3.5) . �
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For the rest of this section we fix s ∈ Cr and ζ ∈ µ2n1(C) satisfying (3.4), set ω = ωs,ζ
and let ω′ be its canonical extension to Ã∗.

3.2. Intertwining operators. For w ∈W let wω be the character of ÃnZ̃ defined by

(wω)(a) = ω(s(w)−1as(w))

and similarly, denote by wω′ the canonical extension of wω to Ã∗. An important role in
the study of the principal series representations is played by the intertwining operators
Tw : I(ω′) → I(wω′). They were studied in [17, §1.2] and we now recall some of their
properties. If s satisfies

(3.13) Re si > Re si+1 for all i such that (i, i+ 1) ∈ Φ−(w−1)

then Twϕ is defined for ϕ ∈ I(ω′) by the absolutely convergent integral

(3.14) Twϕ(g) =

∫
Uw

ϕ(s(w0u)g) du.

For general s the value of this integral can be regularized as follows. Using the decom-
position G̃ = B̃K∗, the character χs of B̃ (see (3.2)) can be extended uniquely to a right
K∗-invariant function on G̃, that we denote by χ̃s. For ϕ ∈ I(ω′) we define the holomorphic
section ϕt ∈ I(χt|B̃∗ω

′) by ϕt = χ̃t ϕ, t = (t1, . . . , tr) ∈ Cr. Let

L(x) = (1− q−x)−1, x ∈ C
be the local zeta function of F and for α = (i, j) ∈ Φ let Lα(s) = L(si − sj). The function

t 7→

 ∏
α∈Φ−(w−1)

Lα(n(t+ s))−1

Twϕt

defined for all t such that s+ t satisfies (3.13) is in fact a polynomial in q±t1 , . . . , q±tr . For
s such that

∏
α∈Φ−(w−1) Lα(ns)−1 6= 0 this allows us to define Twϕ by

(3.15) Twϕ =

 ∏
α∈Φ−(w−1)

Lα(ns)

 ∏
α∈Φ−(w−1)

Lα(n(t+ s))−1

Twϕt


|t=0.

It gives the regularization of the integral (3.14) and we symbolically denote it by

Twϕ(g) =

∫ ∗
Uw

ϕ(s(w0u)g) du.

We call s or ω regular if for all w ∈W \ {e} we have ω 6= wω, i.e. if for all i 6= j we have

si − sj 6∈
2π
√
−1

n log q
Z.

Thus, for every regular ω and every w ∈ W, Tw is defined on I(ω′) by (3.15). For the
normalized K∗-invariant element we have

(3.16) TwϕK(ω′) = cw(s)ϕK(wω′)
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where

cw(s) =
∏

(i,j)∈Φ−(w−1)

L(n(si − sj))
L(n(si − sj) + 1)

.

For every w1, w2 ∈W we have the following equality of intertwining operators from I(ω′)
to I(w1w2ω

′)

(3.17) Tw1Tw2 =
cw1(w2s)cw2(s)

cw1w2(s)
Tw1w2 .

Recall further that

(3.18)
cw1(w2s)cw2(s)

cw1w2(s)
= 1 whenever `(w1w2) = `(w1) + `(w2).

3.3. The Iwahori invariant subspace. Let I denote the Iwahori subgroup of K com-
patible with B. It is the group of all matrices in K with upper triangular projection to
GLr(O/p). The Casselman-Shalika method is based on an explicit expansion of ϕK in terms
of a carefully chosen basis, convenient for computations, of the Iwahori invariant subspace
I(ω′)I

∗
of I(ω′). Next, we select the basis adopting the approach of Y. Sakellaridis (cf.

[26]). As it turns out, this generalizes the basis used in [9, 10] (see Remark 1 below).
For every a ∈ Ã let ζa : Ã→ µn(F ) be the homomorphism defined by

ι(ζa(b)) = aba−1b−1, b ∈ Ã.

Since Ã∗ is a maximal abelian subgroup of Ã it follows that ζa is trivial on Ã∗ if and only
if a ∈ Ã∗. Note that ζa is trivial on Z̃Ãn for all a ∈ Ã. Since Ã∗ = Z̃Ãn(Ã ∩K∗) we get
that ζa is trivial on Ã ∩K∗ if and only if a ∈ Ã∗.

Lemma 3. For every ϕ ∈ I(ω′)I
∗

the support of ϕ is contained in B̃∗K
∗.

Proof. The group G̃ has a disjoint decomposition

(3.19) G̃ = t
a∈Ã∗\Ã

t
w∈W

B̃∗a s(w)I∗

and therefore ϕ ∈ I(ω′)I
∗

is determined by its values ϕ(a s(w)) for w ∈W and a ∈ Ã. The
decomposition (3.19) gives in particular

B̃∗K
∗ = t

w∈W
B̃∗s(w)I∗.

Fix a ∈ Ã and let a0 ∈ A ∩K ⊆ I. It follows from (2.9) that κ∗(a0) = s(a0). Therefore,
on the one hand we have

ϕ(as(w)s(a0)) = ϕ(as(w)),

and on the other hand by (3.1) we have

as(w)s(a0) = as(wa0w
−1)s(w) = ι(ζa(s(wa0w

−1)))s(wa0w
−1)as(w).

Consequently

ϕ(as(w)s(a0)) = ε(ζa(wa0w
−1))ϕ(as(w)).
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It follows that if ϕ(as(w)) 6= 0 for some w ∈W then ζa is trivial on Ã∗ ∩K∗ and therefore
that a ∈ Ã∗. The lemma follows. �

It is easy to verify that for every w ∈ W there exists a unique element ϕw = ϕw(ω′) ∈
I(ω′)I

∗
that is supported on B̃∗s(w)I∗ and such that ϕw(s(w)) = 1. It follows from Lemma

3 that the set

B1 = {ϕw : w ∈W}
is a basis of I(ω′)I

∗
and we have

ϕK =
∑
w∈W

ϕw.

This expansion of ϕK is, however, not very useful for our purpose. We will soon see that
the set

B2 = {Twϕw0(w
−1ω′) : w ∈W}

is a basis of I(ω′)I
∗
; this is in fact the basis we are after. In order to see that B2 is indeed a

basis we will show that the transition matrix that expresses the set B2 in terms of the basis
B1 is upper uni-triangular and in particular invertible. For this purpose we need to recall
an elementary property of products of Bruhat cells in G. For w ∈W let C(w) = BwB.

Lemma 4. For every w1, w2 ∈W we have

(3.20) C(w1)C(w2) ⊆
(

∪
`(w)<`(w1)+`(w2)

C(w)

)
∪ C(w1w2).

Proof. If `(w1) = 1 then C(w1)C(w2) ⊆ C(w1w2) ∪ C(w2) by the Tits system formalism
(see for example [16, §28.3]) and in particular (3.20) holds. The lemma follows by a simple
induction on `(w1). �

Lemma 5. The set B2 is a basis of I(ω′)I
∗
.

Proof. We will show that

(3.21) Tww0ϕw0 − ϕw ∈ ⊕
`(w′)>`(w)

C ϕw′ .

This puts B2 in upper uni-triangular relation with B1 and therefore B2 is indeed a basis.
By Lemma 3, for every ϕ ∈ I(ω′)I

∗
we have

ϕ =
∑
w∈W

ϕ(s(w))ϕw.

Using the change of variables w 7→ ww0, to get (3.21) it is therefore enough to show two
things:

(1) Twϕw0(s(ww0)) = 1, and
(2) if w′ ∈W \ {ww0} is such that Twϕw0(s(w′)) 6= 0 then `(w′) > `(ww0).

We first show the second statement. Recall that

supp(ϕw0) = B̃∗s(w0)I∗ ⊆ C̃(w0).
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If s(w−1u)s(w′) lies in C̃(w0) for some u ∈ Uw then in particular w−1uw′ ∈ C(w0), i.e.
C(w−1)C(w′) contains the open cell C(w0). It follows from Lemma 4 that either w′ = ww0

or `(w0) < `(w) + `(w′), i.e. `(w′) > `(w0)− `(w) = `(ww0). In the region of convergence
of the integral (3.14) it follows that if Twϕw0(s(w′)) 6= 0 then either w′ = ww0 or `(w′) >
`(ww0) and by meromorphic continuation the same holds in general. It is left to show that
Twϕw0(s(ww0)) = 1. Again, using meromorphic continuation it is enough to show this in
the region of convergence. Note that if u ∈ Uw is such that w−1uww0 ∈ Bw0I then there
exists b ∈ B and u0 ∈ U ∩ I such that w−1uww0 = bw0u0 and since w−1Uww ⊆ U we get
that b = (w−1uw)(w0(u0)−1w−1

0 ) ∈ B ∩ U = {e}. In particular u ∈ Uw ∩K. This implies
that

(3.22) Twϕw0(s(ww0)) =

∫
Uw∩K

ϕw0(s(w−1u)s(ww0)) du.

But if u ∈ Uw ∩K and w1 = ww0 then

s(w−1u)s(ww0) = s(w0)s(w1)−1s(u)s(w1) = s(w0)s(w−1
1 uw1) ∈ s(w0)I∗.

Here the first equality follows from (2.9) and the second holds since in addition w−1
1 uw1 ⊆

U ∩K. Therefore by (2.6)

σ(w−1
1 u,w1) = σ(w−1

1 uw1w
−1
1 , w1) = σ(w−1

1 , w1) = 1.

This implies that the integral in (3.22) is over the constant function 1. From our normal-
ization of measures we indeed have

Twϕw0(s(ww0)) = 1.

This shows (3.21) and completes the proof of the lemma. �

As an almost straightforward consequence we now have

Lemma 6. The expansion of ϕK in terms of the basis B2 is given by

ϕK(ω′) =
∑
w∈W

cw0(w
−1s)

cw(w−1s)
Twϕw0(w

−1ω′).

Proof. By Lemma 5 there are constants αw(s) such that

(3.23) ϕK =
∑
w∈W

αw(s)Twϕw0 .

It follows from the property (3.21) and the proof of Lemma 5 that Twϕw0(e) equals 1 if
w = w0 and 0 otherwise. Therefore evaluating (3.23) at e we get that

(3.24) αw0(s) = 1.

Now apply an intertwining operator Tw′ to (3.23). On the one hand

Tw′ϕK(ω′) = cw′(s)ϕK(w′ω′) = cw′(s)
∑
w∈W

αw(w′s)Twϕw0(w
−1w′ω′).



16 GAUTAM CHINTA AND OMER OFFEN

On the other hand by (3.17) we get that

Tw′ϕK(ω′) =
∑
w∈W

αw(s)Tw′Twϕw0(w
−1ω′) = cw′(s)

∑
w∈W

cw(w−1s)

cw′w(w−1s)
αw(s)Tw′wϕw0(w

−1ω′)

=cw′(s)
∑
w∈W

c(w′)−1w(w−1w′s)

cw(w−1w′s)
α(w′)−1w(s)Twϕw0(w

−1w′ω′).

Now comparing the coefficient for w = w0 for the two expansions of Tw′ϕK(ω′) and taking
(3.24) into consideration we obtain that

c(w′)−1w0
(w−1

0 w′s)

cw0(w
−1
0 w′s)

α(w′)−1w0
(s) = 1,

i.e. that αw(s) =
cw0 (w−1s)

cw(w−1s)
. The lemma follows. �

Remark 1. The proof of Lemma 5 together with (3.17) and (3.18) also shows that for
w, w′ ∈W we have

Tw′Twϕw0(e) =

{
1 w′w = w0

0 otherwise.

In particular, in the case n = 1, B2 is the basis used by Casselman and Shalika reordered.

As we shall see, this basis proves useful for computation of the Whittaker spherical
functions. In Section 10 we further demonstrate the utility of the above expansion of ϕK
by computing the zonal spherical functions for G̃.

4. Spherical Whittaker functions

Whittaker functionals on the principal series representations of G̃ were defined and stud-
ied in [17, §3]. We recall the relevant results, introduce the associated spherical Whittaker
functions and compute them in terms of the Kazhdan-Patterson functional equations.

For the rest of this work fix a root of unity ζ0 satisfying (3.4). We often suppress from our
notation the dependence of objects on ζ0. Let s ∈ Cr, ω = ωs,ζ0 the ε-genuine, unramified,

normalized character of ÃnZ̃ associated to (s, ζ0) by Lemma 2 and let ω′ be its canonical
extension to Ã∗. Denote by Wh(ω′) the space of Whittaker functionals on I(ω′), i.e. the
space of all W ∈ I(ω′)∗ such that W(R(s(u))ϕ) = ψU(u)W(ϕ), u ∈ U and ϕ ∈ I(ω′).
From [17, Lemma 1.3.2] we have that

dimC Wh(ω′) =
∣∣∣Ã∗\Ã∣∣∣ = n2 n

r−1.

For every a ∈ Ã Kazhdan and Patterson associated a Whittaker functional Wa ∈Wh(ω′)
defined by

Wa(ϕ) =Wa(ϕ : ω′) =

∫ ∗
U

ϕ(a s(w0u))ψU(u)−1 du, ϕ ∈ I(ω′).
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As is the case with the intertwining operators, the integral is absolutely convergent when-
ever Re s1 > · · · > Re sr and for general s we write

∫ ∗
U

for the regularized integral that
provides the meromorphic continuation. It is easy to see that

(4.1) Wa′a(ω
′) = (χρω

′)(a′)Wa(ω
′), a′ ∈ Ã∗, a ∈ Ã.

Furthermore, it follows from [17, Lemma 1.3.1] that for any set of representatives Γ for
Ã∗\Ã the set B(Γ) = {Wγ(ω

′) : γ ∈ Γ} is a basis for Wh(ω′). If Γ′ is another set of

representatives for Ã∗\Ã then the basis B(Γ′) is proportional to B(Γ) and for every w ∈W

there is a transition matrix Dw(s) = DΓ,Γ′
w (s) = (τγ,γ′(w, s))γ∈Γ,γ′∈Γ′ between the

∣∣∣Ã∗\Ã∣∣∣-
tuples (Wγ(wω

′) ◦ Tw)γ∈Γ and (Wγ′(ω
′))γ′∈Γ′ such that

(Wγ(wω
′) ◦ Tw)γ∈Γ = Dw(s)(Wγ′(ω

′))γ′∈Γ′ .

Note that, as the notation suggests, the matrix coefficient τγ,γ′(w, s) depends on γ and γ′

but not on the sets Γ and Γ′ in which they lie, the coefficient τa,a′(w, s) is now defined for

any two elements a, a′ ∈ Ã (even if a 6= a′ but Ã∗a = Ã∗a
′).

In Section 5 we provide the Kazhdan-Patterson formula for τa,a′(w, s). In this section we
compute the spherical Whittaker functions in terms of Dw(s) by the Casselman-Shalika
method. For every a ∈ Ã define the ε-genuine, spherical Whittaker function Wa by

Wa(g) = Wa(g : ω′) =Wa(R(g)ϕK : ω′), g ∈ G̃.

Expanding ϕK according to Lemma 6 we obtain

(Wγ(g : ω′))γ∈Γ =
∑
w

cw0(w
−1s)

cw(w−1s)
(Wγ(R(g)Twϕw0(w

−1ω′) : ω′))γ∈Γ(4.2)

=
∑
w

cw0(w
−1s)

cw(w−1s)
(Wγ(ω

′) ◦ Tw(R(g)ϕw0(w
−1ω′)))γ∈Γ

=
∑
w

cw0(w
−1s)

cw(w−1s)
Dw(w−1s)(Wγ′(R(g)ϕw0 : w−1ω′))γ′∈Γ′ .

Expanding (4.2) further we get that

(4.3) Wa(g) =
∑
w

cw0(w
−1s)

cw(w−1s)

∑
γ′∈Γ′

τa,γ′(w,w
−1s)Wγ′(R(g)ϕw0 : w−1ω′).

Since

(4.4) Wa(s(u)gk) = ψU(u)Wa(g), u ∈ U, g ∈ G̃, k ∈ K∗

and G̃ = s(U)ÃK∗ it is enough to compute Wa on Ã. Set

A− = {diag(a1, . . . , ar) ∈ A : v(a1) ≥ v(a2) · · · ≥ v(ar)}.

In the following lemma we compute the term Wa(R(b)ϕw0 : ω′) for every a, b ∈ Ã. As a

consequence we get that Wa|Ã is supported on Ã− and that for g ∈ Ã− there is a unique
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γ′ such that the inner summand in (4.3) associated to γ′ does not vanish. For b ∈ Ã set

b∗ = s(w0)b−1s(w0)−1 ∈ Ã.

Lemma 7. For a, b ∈ Ã we have

Wa(R(b)ϕw0 : ω′) =

{
χ2ρ(b)(χρω

′)(a(b∗)−1) b ∈ Ã− and Ã∗a = Ã∗b
∗

0 otherwise.

Proof. We prove the lemma using the integral definition ofWa in the range of convergence.
The lemma follows in the general case by meromorphic continuation. Note that for any
u ∈ U we have a s(w0u) b ∈ B̃∗s(w0)I∗ if and only if a s(w0) b s(w0)−1 ∈ Ã∗ and b−1ub ∈
U ∩K. It further follows from (2.7) that b s(U) b−1 = s(U). Since B̃∗s(w0)I∗ is the support
of ϕw0 it follows that Wa(R(b)ϕw0 : ω′) = 0 unless a(b∗)−1 ∈ Ã∗. If this is the case we have

Wa(R(b)ϕw0 : ω′) =

∫
b(U∩K)b−1

ϕw0(a s(w0u) b)ψU(u)−1 du.

After a change of variable u 7→ bub−1, we apply (2.7) to obtain

Wa(R(b)ϕw0) = χ2ρ(b)

∫
U∩K

ϕw0(a s(w0) b s(u))ψU(p(b)up(b)−1)−1 du

= χ2ρ(b)ϕw0(a s(w0) b)

∫
U∩K

ψU(p(b)up(b)−1)−1 du.

The character u 7→ ψU(p(b)up(b)−1) is trivial on U ∩ K if and only if b ∈ Ã−. It now

further follows that Wa(R(b)ϕw0) = 0 unless b ∈ Ã−. If b ∈ Ã− and Ã∗a = Ã∗b
∗ then

ϕw0(a s(w0) b) = ϕw0(a(b∗)−1 · s(w0)) = (χρω
′)(a(b∗)−1)

since by definition ϕw0(s(w0)) = 1. The lemma follows. �

We conclude this section with

Theorem 1. For a, b ∈ Ã we have Wa(b : ω′) = 0 unless b ∈ Ã−. In this case

(4.5) Wa(b : ω′) = χ2ρ(b)
∑
w∈W

cw0(w
−1s)

cw(w−1s)
τa,b∗(w,w

−1s).

Proof. Apply Lemma 7 to (4.3) and choose Γ′ such that b∗ ∈ Γ′. �

In the following section we review the functional equations of Kazhdan and Patterson
which give a formula for the coefficients τa,b∗ (see Proposition 1 below). Then in Sections
6, 7 and 8 we present analogous formulas for different sets of bases of spherical Whittaker
functions.
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5. The functional equation

The functional equation for the Whittaker functionals of normalized, unramified prin-
cipal series representations was obtained by Kazhdan and Patterson [17, Lemma 1.3.3].
Minor corrections were pointed out in [1, Proposition 2.3] where they considered the spe-
cial case r = n − 1. In particular, it was pointed out by Banks-Bump-Lieman that to
justify the computation of the functional equation, it is essential to use, as we do, the
block compatible 2-cocycle given by [2]. In this section we present the explicit description
of the functional equations. That is, we provide formulas for the coefficients τa,b(w, s). The
upshot is that (4.5) becomes an explicit formula for the spherical Whittaker functions.

Recall that Λ = Zr. Introduce the variables

y = (y1, . . . , yr) where yi = q−si

with the W-action
wy = (yw−1(1), . . . , yw−1(r)).

Set
yλ = yλ1

1 y
λ2
2 · · · yλrr for λ = (λ1, . . . , λr) ∈ Λ.

Note that (wy)λ = yw
−1λ. By abuse of notation, we further set cw(y) = cw(s), w ∈ W.

Thus,

cw(y) =
∏
i<j

w(i)>w(j)

1− q−1( yi
yj

)n

1− ( yi
yj

)n
.

Similarly, for a, b ∈ Ã and w ∈ W we write τa,b(w : y) = τa,b(w, s). It follows from the

equivariance (4.1) that for every w ∈W, a, a′ ∈ Ã∗ and b, b′ ∈ Ã we have

(5.1) τab,a′b′(w : y) = χρ(a(a′)−1) (wω′)(a)ω′(a′)−1 τb,b′(w : y).

For any w1, w2 ∈W and any sets of representatives Γ, Γ′, Γ′′ for Ã∗\Ã the multiplicativity
(3.17) of the intertwining operators implies the cocycle relation

(5.2) DΓ,Γ′′

w1w2
(s) =

cw1w2(s)

cw1(w2s)cw2(s)
DΓ,Γ′

w1
(w2s)D

Γ′,Γ′′

w2
(s).

It follows from (5.2) that

(5.3) τa,b(w1w2 : y) =
cw1w2(y)

cw1(w2y)cw2(y)

∑
γ∈Ã∗\Ã

τa,γ(w1 : w2y)τγ,b(w2 : y)

for any a, b ∈ Ã. Note that the summands are independent of coset representatives for
γ ∈ Ã∗\Ã. The property (5.3) reduces the computation of the coefficients τa,b(w : y) to
that for w a simple reflection. Define the sublattice Λ0 of Λ by

Λ0 = {(λ1, . . . , λr) ∈ n2Λ : λi − λi+1 ≡ 0 (mod n), i = 1, . . . , r − 1}.
For a ∈ Ã such that p(a) = diag(a1, . . . , ar) let

f(a) = (v(a1), . . . , v(ar)) ∈ Λ.
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Then a ∈ Ã∗ if and only if f(a) ∈ Λ0. For k ∈ Z/nZ we denote by gψ(k) the Gauss sum
defined by

gψ(k) =
∑

u∈O×/1+p

ε((u,$k))ψ(−$−1u).

For a simple reflection wα, α = (i, i+ 1) ∈ ∆ and λ = (λ1, . . . , λr) ∈ Λ set

wα[λ] = (λ1, . . . , λi−1, λi+1 − 1, λi + 1, λi+2, . . . , λr).

By composition, this defines an action (w, λ) 7→ w[λ] of W on Λ (the Coxeter relations are
easily verified). We also define $λ = diag($λ1 , . . . , $λr) ∈ A.

Proposition 1 (Kazhdan-Patterson). Let α = (i, i+ 1) ∈ ∆ and let a, b ∈ Ã. We have

τa,b(wα : y) = τ 1
a,b(wα : y) + τ 2

a,b(wα : y)

where τ ia,b(wα : y) are defined by the following properties:

τ ia0a,b0b
(wα : y) = χρ(a0b

−1
0 ) (wαω

′)(a0)ω′(b0)−1 τ ia,b(wα : y), a0, b0 ∈ Ã∗, i = 1, 2.

For λ, λ′ ∈ Λ we have

τ 1
s($λ),s($λ′ )

(wα : y) = 0 unless λ− λ′ ∈ Λ0

τ 2
s($λ),s($λ′ )

(wα : y) = 0 unless λ− wα[λ′] ∈ Λ0,

τ 1
s($λ),s($λ)(wα : y) = (1− q−1)

(yi+1/yi)
nbλi−λi+1

n
c

1− (yi/yi+1)n
,

and
τ 2
s($λ),s($wα[λ])(wα : y) = ε(%)λiλi+1 qλi+1−λi−2 gψ(λi − λi+1 + 1).

6. A change of basis

In the previous two sections we gave an explicit formula for a particular basis of the
space of spherical Whittaker functions by using the Casselman-Shalika method. In this
section we translate these formulas into a new basis in order to facilitate the comparison
with the local parts of Weyl group multiple Dirichlet series which is carried out in Section
9.

We identify the polynomial ring C[Λ] with C[y±1
1 , . . . , y±1

r ] and C[Λ0] with the corre-
sponding subring. Denote their respective fraction fields by C(Λ) and C(Λ0). We note
that by Proposition 1 and (5.3),

(6.1) τa,b(w : y) ∈ C(Λ0) for all a, b ∈ Ã, w ∈W.

Remark 2. In place of the fraction fields C(Λ) and C(Λ0) we could actually work over the
smaller rings obtained by localizing C[Λ] and C[Λ0] at the multiplicative set generated by{

1−
(yi
yj

)n
, 1− q±1

(yi
yj

)n
: i < j

}
.

However, this more refined information on the poles of the rational functions which arise
will play no role in the sequel.
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Let Ξ be the dual of the finite group L := Λ0\Λ. Under the group isomorphism Ã∗\Ã→
Λ0\Λ, a 7→ f(a) we may consider elements of Ξ as characters of Ã∗\Ã as well. We also let
Ξ act on C[Λ] by

(6.2) ξ
(∑

aλy
λ
)

=
∑

aλξ(λ)yλ, ξ ∈ Ξ.

This extends naturally to an action of Ξ on C(Λ). For l ∈ L we define

C(Λ)l = {f ∈ C(Λ) : ξ · f = ξ(l)f, for all ξ ∈ Ξ}.
Then

C(Λ) = ⊕
l∈L

C(Λ)l.

Note further that C(Λ)0 = C(Λ0),

(6.3) f1f2 ∈ C(Λ)l1+l2 , for f1 ∈ C(Λ)l1 , f2 ∈ C(Λ)l2

and

(6.4) f(wy) ∈ C(Λ)w−1l, for f ∈ C(Λ)l, w ∈W.

In Section 4 we gave a basis for the space of spherical Whittaker functions parametrized
by (a set of representatives) for Ã∗\Ã. In this section we will give a basis parametrized by
elements of the dual group Ξ.

For the remainder of this section we fix a set R of representatives for Λ0\Λ and the
corresponding set Γ = {s($µ) : µ ∈ R} of representatives for Ã∗\Ã. Let X(ω′) =

indÃ
Ã∗

(χ−ρ(ω
′)−1). An element of X(ω′) is uniquely determined by its values on Γ. Let

φ(y) ∈ X(ω′) be defined by

φ(s($µ) : y) = qρ·µ y−µ, for µ ∈ R.
(The dot product on Rr here and henceforth is the standard one.) It follows that

(6.5) φ(a : y) ∈ C(Λ)−f(a), φ(a : y)−1 ∈ C(Λ)f(a), for a ∈ Ã.
Note that ξφ(y) ∈ X(ω′) for ξ ∈ Ξ and {ξ φ(y) : ξ ∈ Ξ} forms a basis for X(ω′). Let

(6.6) Wξ(g : y) =
∑

a∈Ã∗\Ã

ξ(a)φ(a : y)Wa(g, ω
′).

Then {Wξ : ξ ∈ Ξ} is a basis of spherical Whittaker functions.

Theorem 2. We have Wξ(b : y) = 0 unless b ∈ Ã−. For b ∈ Ã−,

(6.7) Wξ(b : y) = χ2ρ(b)
∑
w∈W

cw0(wy)

cw−1(wy)

∑
a∈Ã∗\Ã

ξ(a)φ(a : y)τa,b∗(w
−1 : wy).

We can alternatively write this as

Wξ(b : y) = χ2ρ(b)
∑
w∈W

cw0(wy)

cw−1(wy)

∑
µ∈R

ξ(µ)qρ·µ y−µτs($µ),b∗(w
−1 : wy), b ∈ Ã−.
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Proof. The Theorem is obtained by applying Theorem 1 to (6.6) with g = b and changing
the order of summation. �

6.1. Reinterpretation in terms of a Weyl group action. We reinterpret Theorem 2 in
terms of an action of the Weyl group W on the field C(Λ). The purpose of this is two-fold:
first, the group action will facilitate the construction of a symmetric basis in Section 7,
and second, the action defined here will be related to that defined by Chinta and Gunnells
[12] (see Section 9) in order to show that the spherical Whittaker functions of this paper
arise as the local parts of Weyl group multiple Dirichlet series.

For a, b ∈ Ã and w ∈W let

(6.8) τ̃a,b(w : y) =
1

cw(y)
φ(a : wy)φ(b : y)−1 τa,b(w : y).

It follows from (5.1) that τ̃a0a,b0b(w : y) = τ̃a,b(w : y), a0, b0 ∈ Ã∗. Introduce the normalized
matrix

D̃w(y) = (τ̃a,b(w : y))a, b∈Ã∗\Ã.

As a consequence of (5.2) we have

(6.9) D̃w1w2(y) = D̃w1(w2y)D̃w2(y), w1, w2 ∈W.

It further follows from (6.1), (6.3), (6.4) and (6.5) that

(6.10) τ̃a,b(w : y) ∈ C(Λ)f(b)−w−1f(a).

For λ ∈ R, f ∈ C(Λ)λ and w ∈W we define

(6.11) (f |w)(y) =
∑
a∈Γ

τ̃a,s($−λ)(w
−1 : wy)f(wy).

Extend the definition of (f |w) to all f ∈ C(Λ) by linearity.

Proposition 2. The map (f, w) 7→ f |w defines an action of the group W on C(Λ).

Proof. We need to show that
(f |w1w2) = (f |w1)|w2

for all w1, w2 ∈W. Without loss of generality we may assume that f ∈ C(Λ)λ. To ease the
notation in the proof, we will write τ̃f(a),f(b)(w : y) = τ̃a,b(w : y), a, b ∈ Ã. Then

(f |w1)(y) =
∑
µ′∈R

τ̃µ′,−λ(w
−1
1 : w1y)f(w1y).

It follows from (6.3), (6.4) and (6.10) that the µ′ term in the above sum lies in C(Λ)−µ′ .
Therefore, letting w2 act on this term and then summing over all µ′ gives

((f |w1)|w2)(y) =

[∑
µ′∈R

∑
µ′′∈R

τ̃µ′′,µ′(w
−1
2 : w2y)τ̃µ′,−λ(w

−1
1 : w1w2y)

]
f(w1w2y).

Interchange the order of summation and use (6.9) in the form

D̃w−1
2 w−1

1
(w1w2y) = D̃w−1

2
(w2y)D̃w−1

1
(w1w2y)
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to rewrite the equation above as

((f |w1)|w2)(y) =

[∑
µ′′∈R

τ̃µ′′,−λ(w
−1
2 w−1

1 : w1w2y)

]
f(w1w2y).

But this is exactly (f |w1w2)(y). �

Let ξ0 ∈ Ξ be the trivial character. It follows from (6.7) that

Wξ0(b : y) = χ2ρ(b)
∑
w∈W

cw0(wy)
∑

a∈Ã∗\Ã

φ(b∗ : wy)τ̃a,b∗(w
−1 : wy), b ∈ Ã−.

Taking (6.5) and the definition (6.11) of the group action into account we get that

(6.12) Wξ0(b : y) = χ2ρ(b)
∑
w∈W

cw0(wy)[φ(b∗ : ·)|w](y), b ∈ Ã−.

Recall that a spherical Whittaker function is determined by its values on Ũ\G̃/K∗.
We now determine a complete set of representatives {dµ ∈ Ã : µ ∈ Λ} in such a way
that φ(d∗µ : y) is a monomial function that we explicate for each µ. Given µ ∈ Λ write
−µ = ν + nλ1 + kn2Ir, where ν ∈ R, λ1 ∈ Λ and 0 ≤ k < n1. Since nλ1 + kn2Ir ∈ Λ0, the
λ1, ν and k are all uniquely determined by µ. When necessary we think of them as functions
of µ (dependent of course on our choice of R) and denote λ1 = λ1(µ), ν = ν(µ), k = k(µ).
Define dµ to be the element of Ã such that

d∗µ = s($n2e)ks($nλ1)s($ν).

Following the definitions we have

(6.13) φ(d∗µ : y) = ζk0 q
−ρ·µyµ.

Note that f(dλ) = w0λ. Hence, indeed, {dλ : λ ∈ Λ} is a set of representatives for Ũ\G̃/K∗
and dλ ∈ Ã− if and only if λ ∈ Λ− = {(λ1, . . . , λr) ∈ Λ : λ1 ≤ λ2 ≤ · · · ≤ λr}. Henceforth,
for µ ∈ Λ and w ∈W we denote (f |w)(y) by (yµ|w) when f(y) = yµ. (In Section 9 we also
use a similar convention with respect to another action of W without further mention.)

Corollary 1. Let µ ∈ Λ−. Then

Wξ0(dµ : y) = ζ
k(µ)
0 qρ·µ

∑
w∈W

cw0(wy)(yµ|w).

In particular, [Wξ0(g : ·)|w](y) = Wξ0(g : y) for all w ∈W and g ∈ G.

Proof. Note that χ2ρ(dµ) = q2ρ·µ. The Corollary follows from (6.12) and (6.13). �

For every µ ∈ Λ we have µ = ν(−µ) + nλ1(−µ) + k(−µ)n2Ir. There exists therefore
m(µ) ∈ {0, 1} such that

s($µ) = ι(%)m(µ) s($n2e)k(−µ) s($nλ1(−µ)) s($ν(−µ)).
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(In fact, m(µ) can be computed explicitly using (2.5) and (3.6).) For later use we observe
that

(6.14) φ(s($µ) : y) = ε(%)m(µ)ζ
k(−µ)
0 qρ·µy−µ.

7. A symmetric basis of Whittaker functions

The purpose of this section is to construct a basis of spherical Whittaker functions so
that, as in the n = 1 case, their values on G̃ are symmetric rational functions in the
complex parameter y. In light of the functional equation satisfied by Eisenstein series (e.g.
[23, Theorem IV.1.10]), such a basis should be of interest for the global theory.

Let f 7→ f̄ for f ∈ C(Λ) denote complex conjugation (i.e. z̄ is the complex conjugate of
z ∈ C and ȳi = yi, i = 1, . . . , r). We further denote by X? = tX the conjugate-transpose
of any matrix X with entries in C(Λ). Finally, we set

ŷ = (ŷ1, . . . , ŷr) where ŷi =
y1y2 · · · yr

yi
.

We continue to let
Wξ0(g : y) =

∑
a∈Γ

φ(a : y)Wa(g, ω
′)

be the spherical Whittaker function associated to the trivial character ξ0, as defined in the
previous section. For g ∈ G̃ let vg(y) be the column vector

vg(y) = (φ(b : y)Wb(g : y))b∈Γ

and let Vg be the spherical Whittaker function whose value at g′ ∈ G̃ is given by

Vg(g
′ : y) = vg(ŷ)? · vg′(y).

Clearly Vg0(g : ·) ∈ C(Λ) for every g0, g ∈ G̃. Since {φ(a : y)Wa(· : y) : a ∈ Γ}
forms a basis of spherical Whittaker functions, there is a subset I = {ga : a ∈ Γ} ⊆ G̃
of |Γ| elements such that {vga : a ∈ Γ} are linearly independent over C(Λ). The set
{Vga(· : y) : a ∈ Γ} is then a basis of spherical Whittaker functions. The next theorem
asserts that this basis consists of symmetric functions in y.

Theorem 3. For every g0, g ∈ G̃ and w ∈W we have

Vg0(g : wy) = Vg0(g : y).

The rest of this section is dedicated to the proof of Theorem 3. It requires a certain
symmetry satisfied by the matrix D̃w(y) that we pursue first.

The following proposition is merely rewriting Proposition 1 in terms of the normalized
coefficients taking (6.14) into consideration.

Proposition 3. Let α = (i, i+ 1) ∈ ∆ and let a, b ∈ Ã. We have

τ̃a,b(wα : y) = τ̃ 1
a,b(wα : y) + τ̃ 2

a,b(wα : y)

where τ̃ ia,b(wα : y), i = 1, 2 are characterized by the following properties:

(7.1) τ̃ ia0a,b0b
(wα : y) = τ̃ ia,b(wα : y), a0, b0 ∈ Ã∗, i = 1, 2.



A METAPLECTIC CASSELMAN-SHALIKA FORMULA FOR GLr 25

For λ, λ′ ∈ Λ we have

(7.2) τ̃ 1
s($λ),s($λ′ )

(wα : y) = 0 unless λ− λ′ ∈ Λ0

(7.3) τ̃ 2
s($λ),s($λ′ )

(wα : y) = 0 unless λ− wα[λ′] ∈ Λ0,

(7.4) τ̃ 1
s($λ),s($λ)(wα : y) =

1− q−1

cwα(y)

(yi+1/yi)
nbλi−λi+1

n
c

1− (yi/yi+1)n
(yi/yi+1)λi−λi+1 ,

and

τ̃ 2
s($λ),s($wα[λ])(wα : y)(7.5)

= ε(%)m(wα[λ])−m(λ)+λiλi+1 ζ
k(−wα[λ])−k(−λ)
0 gψ(λi − λi+1 + 1)

q−1

cwα(y)

yi+1

yi
.

As a consequence of Proposition 3 we deduce the following symmetries of D̃w(y).

Lemma 8. For any simple root α = (i, i+ 1) ∈ ∆ we have

(7.6) D̃wα(ŷ) = D̃wα(y)−1

and

(7.7) D̃wα(y)? = D̃wα(y).

Proof. It follows from Proposition 3 that all entries of D̃wα(y) are rational functions in
yi/yi+1 independent of yj for j 6= i, i+1. If y′ = (y′1, . . . , y

′
r) = wαy and y′′ = (y′′1 , . . . , y

′′
r ) =

ŷ then y′i/y
′
i+1 = y′′i /y

′′
i+1 and therefore D̃wα(ŷ) = D̃wα(wαy). But by (6.9) we have

D̃wα(wαy) = D̃wα(y)−1 and (7.6) follows. To show (7.7), by (7.1), (7.2) and (7.3) it is
enough to show for λ ∈ Λ that

(7.8) τ̃ 1
s($λ),s($λ)

(wα : y) = τ̃ 1
s($λ),s($λ)(wα : y)

and

(7.9) τ̃ 2
s($wα[λ]),s($λ)

(wα : y) = τ̃ 2
s($λ),s($wα[λ])(wα : y).

The equality (7.8) is straightforward from (7.4). From (7.5) we get that

τ̃ 2
s($wα[λ]),s($λ)

(wα : y)(7.10)

= (ε(%))m(λ)−m(wα[λ])+(λi+1−1)(λi+1) (ζ0)k(−λ)−k(−wα[λ]) gψ(λi+1 − λi − 1)
q−1

cwα(y)

yi+1

yi
.

Recall that ε(%) = ε(%) ∈ {±1} and ζ−1
0 = ζ0 ∈ µ2n1(C). Furthermore, for k 6≡ 0 mod n,

the Gauss sum satisfies gψ(k) gψ(−k) = q ε(%)k and
∣∣gψ(k)

∣∣ = q
1
2 and therefore, for every

k ∈ Z we have
gψ(k) = ε(%)k gψ(−k).

Thus, ε(%)λi+1−λi−1 gψ(λi+1 − λi − 1) = gψ(λi−λi+1 +1) and (7.9) follows from (7.10). The
rest of the lemma readily follows. �
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Corollary 2. For every w ∈W we have

D̃w(ŷ)? = D̃w(y)−1.

Proof. If `(w) = 1 the identity follows from the two identities of Lemma 8. For general w
note that wŷ = ŵy. Applying (6.9) the corollary therefore follows by induction on `(w). �

Proof of Theorem 3. To start let g ∈ Ã. By virtue of the fact that

(7.11) Wξ0(g : y) =
∑
b∈Γ

φ(b : y)Wb(g, ω
′)

is invariant under the action |w for w ∈ W (Corollary 1), (4.5), (6.1), (6.5) and the
definition of the action |w we get that

(7.12) Wξ0(g : y) =
∑
b∈Γ

∑
a∈Γ

τ̃a,b(w
−1 : wy)φ(b : wy)Wb(g : wy).

Equate the terms on the righthand sides of (7.11) and (7.12) which lie in C(Λ)−λ to conclude
that

(7.13) φ(s($λ) : y)Ws($λ)(g : y) =
∑
b∈Γ

τ̃s($λ),b(w
−1 : wy)φ(b : wy)Wb(g : wy)

for all λ ∈ R. In matrix notation this is saying precisely that

vg(y) = D̃w−1(wy)vg(wy) or equivalently, vg(wy) = D̃w−1(wy)−1vg(y).

This was all assuming that g ∈ Ã, but by (4.4), this identity holds for all g ∈ G̃. Therefore,
by Corollary 2 we have

Vg0(g : wy) = vg0(ŵy)? vg(wy)

= vg0(ŷ)? (D̃w−1(ŵy)?)−1 D̃w−1(wy)−1 vg(y)

= vg0(ŷ)? D̃w−1(wy) D̃w−1(wy)−1 vg(y)

= Vg0(g : y)

and the theorem follows. �

8. Preparation for comparison

The purpose of this section is to give a more explicit description of the terms (yλ|w)
which appear in Corollary 1. This description will be used in the following section to prove
Theorem 4 which gives the precise relationship between the spherical Whittaker functions
and the local parts of the type A Weyl group multiple Dirichlet series defined in [12].

Assume in this section and the next that −1 is an nth root of unity in F or equivalently
that % = 1. Note that in this case the property (3.4) simply says that ζ0 is an n1th root of
unity and in particular an nth root of unity. It follows from Lemma 2 that the variables
yi are only determined by ω up to an nth root of unity and therefore that every ε-genuine,
normalized unramified character of ÃnZ̃ is of the form ωs,1 for some s ∈ Cr. We may and
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do therefore assume, through this and the next section, that ζ0 = 1. Under our assumption
that % = 1 we also have

s($λ)s($λ′) = s($λ+λ′), λ, λ′ ∈ Λ.

Thus, d∗λ = s($−λ) for all λ ∈ Λ. It further follows from (6.14) that φ(s($λ) : y) = qρ·λ y−λ

for every λ ∈ Λ.
For w ∈W define

(8.1) Tw(λ : y) = qρ·λ cw0(wy)(yλ| w).

By Corollary 1 we have

Wξ0(dλ : y) =
∑
w∈W

Tw(λ : y).

Expanding (8.1) and applying (6.13) we have,

Tw(λ : y) = qρ·λ cw0(wy) (wy)λ
∑
µ∈R

τ̃s($−µ),s($−λ)(w
−1 : wy).

Note that

Te(λ : y) = qρ·λ cw0(y) yλ

and for a simple reflection wα with α = (i, i+ 1), Proposition 3 implies

Twα(λ : y) = qρ·λ cw0(wαy) ywαλ ×
[
τ̃ 1
s($−λ),s($−λ)(wα : wαy) + τ̃ 2

s($wα[−λ]),s($−λ)(wα : wαy)
]

= qρ·λ
cw0(wαy)

cwα(wαy)
ywαλ

(1− q−1)
( yi
yi+1

)nb
λi+1−λi

n
c−(λi+1−λi)

1− (yi+1

yi
)n

+

q−1 gψ(λi − λi+1 − 1)
yi
yi+1

]
.

Note that

cw0(wαy)

cwα(wαy)
=
cw0(y)

cwα(y)

and recall that

cwα(y) =
1− q−1( yi

yi+1
)n

1− ( yi
yi+1

)n
= −(

yi+1

yi
)n

1− q−1( yi
yi+1

)n

1− (yi+1

yi
)n

.

We introduce the notation (k)n = k − nb k
n
c for every k ∈ Z. Thus 0 ≤ (k)n < n. In the

following proposition we record the last expression we obtained for Twα(λ : y) using this
notation.
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Proposition 4. For a simple reflection wα with α = (i, i+ 1) we have

Twα(λ : y) = qρ·λ cw0(wαy)(yλ|wα)

= −qρ·λ

(
yi
yi+1

)n
cw0(y)

1− q−1
(

yi
yi+1

)n ywαλ
[

(1− q−1)

(
yi
yi+1

)−(λi+1−λi)n

− q−1 gψ(λi − λi+1 − 1)

(
yi
yi+1

)1−n(
1−

(
yi
yi+1

)n)]
.

9. The p-part of a Weyl group multiple Dirichlet series

In this section we review the Chinta-Gunnells [12] construction of the local part of a Weyl
group multiple Dirichlet series associated to the root system Ar−1. We continue to assume
that −1 is an nth root of unity. We begin by defining a group action of the Weyl group
W on the field of rational functions. We denote this action by || in order to distinguish it
from the action introduced in (6.11) above and the action of [12] introduced below. For
λ ∈ R, f ∈ C(Λ)λ and wα the simple reflection associated to α = (i, i+ 1), we define

(f ||wα)(y) =
f(wαy)

1− q−1
(

yi
yi+1

)n
[

(1− q−1)

(
yi
yi+1

)−(λi+1−λi)n

−q−1gψ(λi − λi+1 − 1)

(
yi
yi+1

)1−n(
1−

(
yi
yi+1

)n)]
.

(9.1)

Having defined f ||wα for f ∈ C(Λ)λ, we extend the definition to C(Λ) by linearity. These
definitions extend to give an action of the entire Weyl group W on C(Λ), see [12, Theorem
3.2]. Actually, some changes of variable are necessary to relate the action defined here to
that of [12]. In order to precisely describe the relation between the two actions, we denote
the action of [12] with twisting parameter ` = (l2, . . . , lr) by |`,WMD. The action of [12] is
actually only defined on the localization of the ring C[x1, . . . , xr−1] at the multiplicative
set generated by the polynomials 1−xni , 1− q±1xni for i = 1, . . . , r− 1, but is easily seen to
extend to the field C(x1, . . . , xr−1). (We make the change of variables xi 7→ q−1xi in order
to eliminate some extraneous powers of q.) Let F ∈ C(x1, . . . , xr−1) be a rational function.
Define f ∈ C(Λ) by f(y1, . . . , yr) = F (y1

y2
, . . . , yr−1

yr
). Then, letting λ = (0, l2, l2 + l3, . . . , l2 +

· · ·+ lr),

(F |`,WMDw)

(
y1

y2

, . . . ,
yr−1

yr

)
= y−λ(yλf ||w)(y1, . . . , yr).(9.2)

To verify (9.2), it suffices to do so for w a simple reflection acting on monomials. This
follows from a direct comparison of (9.1) with Eq. (3.14) of [12]. To make the comparison,
recall that we have made the substitutions xi 7→ xi/q. Further, the Gauss sum we use here
is the conjugate of that used in [12]. Then, using the equation (a + 1)n = (a)n + 1 for a
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not congruent to −1 mod n and arguing separately in the two cases di(α)− 2ki + li + 1 is
zero or nonzero mod n (notation being of [ibid.]), we easily arrive at (9.2).

Let us write c(2)(y) =
∏

i<j

(
1−

(
yi
yj

)n)
and for w in the Weyl group W, define j(w, y) =

c(2)(y)/c(2)(wy). It is proved in Section 3 of [12] that

N(y; `) = y−λcw0(y)
∑
w∈W

j(w, y)(yλ||w)

is a polynomial in the yi/yi+1. These polynomials are used in [12] to construct Weyl group
multiple Dirichlet series.

We now turn to the main result of this section — the comparison of N(y; `) with the
Whittaker function Wξ0(dλ : y).

Theorem 4. Let λ = (0, l2, l2 + l3, . . . , l2 + · · ·+ lr) and ` = (l2, . . . , lr) with li non-negative
integers. We have

yλN(y; `) = q−ρ·λWξ0(dλ : y).

Proof. By Theorem 2 we need to prove that∑
w∈W

cw0(y)j(w, y)(yλ||w) =
∑
w∈W

cw0(wy)(yλ|w).

We will show that the sums match up term by term, that is, that

(9.3) j(w, y)(yλ||w) =
cw0(wy)

cw0(y)
(yλ|w)

for all w in the Weyl group. Since both f 7→ j(w, y)(f ||w)(y) and f 7→ cw0 (wy)

cw0 (y)
(f |w)(y)

give actions of W on C(Λ), it suffices to verify (9.3) for all simple reflections wα. Note that
j(wα, y) = −( yi

yi+1
)n and therefore this follows easily by comparing Proposition 4 to the

definition (9.1).
This completes the proof of the theorem. �

Remark 3. In the course of proving (9.3), we have in fact shown

j(w, y)(f ||w) =
cw0(wy)

cw0(y)
(f |w)(y)

for all f ∈ C(Λ) and all w ∈ W, because both actions are extended from monomials to
C(Λ) in the same manner.

10. Zonal spherical functions of G̃

Let C∞,ε(K∗\G̃/K∗) be the space of ε-genuine bi K∗-invariant functions on G̃. The
action of Hε(G̃,K∗) on C∞,ε(G̃/K∗) given by (2.10) restricts to an action on the subspace
C∞,ε(K∗\G̃/K∗).

Definition 3. A function Ω ∈ C∞,ε(K∗\G̃/K∗) is an ε-genuine, zonal spherical function
on G̃ if it is a common eigenfunction of Hε(G̃,K∗).
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Recall from (3.2) that χ2ρ is the modulus function of B̃. We wish to relate between two

different ways to express a G̃-invariant linear form on the space of functions f : G̃ → C
that satisfy

(10.1) f(bg) = χ2ρ(b)f(g), b ∈ B̃, g ∈ G̃.

Of course the space of such linear forms is one dimensional. Since B̃\G̃ ' B\G we can use
the well known formula for G (cf. [18]) to obtain that

f 7→
∫
K∗
f(k) dk =

∏r
i=1 L(i)

L(1)r

∫
U

f(s(w0u)) du

is G̃-invariant.
For s ∈ Cr and ζ ∈ µ2n1(C) satisfying (3.4) let ω = ωs,ζ be the ε-genuine, unramified,

normalized character of ÃnZ̃ associated to (s, ζ) by Lemma 2 and let ω′ be its canonical
extension. Note that I((ω′)−1) is an ε−1-genuine, normalized unramified principal series
representation contragradient to I(ω′). Indeed, note that for any ϕ ∈ I(ω′), ϕ̃ ∈ I((ω′)−1)
the function

g 7→
∑

γ∈Ã∗\Ã

χ−2ρ(γ)ϕ(γg)ϕ̃(γg)

is well-defined (independent of a choice of representatives γ) and satisfies the equivariance
condition (10.1). A G̃-invariant pairing is therefore given by

〈ϕ, ϕ̃〉 =
∑

γ∈Ã∗\Ã

χ−2ρ(γ)

∫
K∗
ϕ(γk)ϕ̃(γk) dk(10.2)

=

∏r
i=1 L(i)

L(1)r

∑
γ∈Ã∗\Ã

χ−2ρ(γ)

∫
U

ϕ(γ s(w0u))ϕ̃(γ s(w0u)) du.(10.3)

Let Ωs = Ωε
s,ζ be the ε-genuine, zonal spherical function on G̃ defined by

Ωs(g) =
〈
R(g)ϕK(ω′), ϕK(ω′

−1
)
〉
.

It can be expressed as

Ωs(g) = Vs(R(g)ϕK(ω′))

where Vs ∈ (I(ω′))∗ is the linear form defined by

Vs(ϕ) =
〈
ϕ, ϕK(ω′

−1
)
〉
.

For every w ∈W the linear form Vs ◦ Tw on I(w−1ω′) is then K∗-invariant. Since

dim(I(ω′)∗)K
∗

= dim I(ω′
−1

)K
∗

= 1,

there is a scalar dw(s) such that

(10.4) Vs ◦ Tw = dw(s) Vw−1s.
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The scalar dw(s) can easily be computed by evaluating both sides of (10.4) at ϕK(w−1ω′).
On the one hand, since ϕK is supported on B̃∗K

∗ and its value on K∗ equals 1 we get from
the definition (10.2) of the inner product that

Vw−1s(ϕK(w−1ω′)) = 1.

On the other hand applying (3.16) as well we get that

Vs ◦ Tw(ϕK(w−1ω′)) = cw(w−1s) Vs(ϕK(ω′)) = cw(w−1s).

Thus,

dw(s) = cw(w−1s).

We now expand ϕK as in Lemma 6. We obtain that

(10.5) Ωs(g) =
∑
w∈W

cw0(w
−1s)

cw(w−1s)
Vs ◦ Tw(R(g)ϕw0) =

∑
w∈W

cw0(w
−1s)Vw−1s(R(g)ϕw0).

We are now ready to compute the zonal spherical functions explicitly. The Cartan decom-
position of G implies that

G̃ = K∗ÃK∗.

Note first that if f is any ε-genuine and bi K∗-invariant function on G̃ then supp(f) ⊆
K∗Ã∗K

∗. Indeed for any a ∈ Ã and any a0 ∈ Ã ∩K∗ we have

f(a) = f(aa0) = f(ι(ζa(a0))a0a) = ε(ζa(a0))f(a).

But, as we have already observed in Section 3.3, if a 6∈ Ã∗ then ζa is not trivial on Ã∩K∗
and therefore we must have f(a) = 0. We therefore get that

supp(Ωs) ⊆ K∗Ã∗K
∗.

For λ = (λ1, . . . , λr) ∈ Λ let $λ = diag($λ1 , . . . , $λr) ∈ A and let

aλ = s(w0)−1s($λ)s(w0).

Let

Λ+ = {λ ∈ Λ : λ1 ≥ · · · ≥ λr}.
Note that for every g ∈ K∗Ã∗K∗ there is a unique integer j such that 0 ≤ j < n1 and a
unique λ ∈ Λ+ such that

g = ι(ζ1) s($n2e)j k1 a
−1
nλ k2

for some ζ1 ∈ µn(F ), k1, k2 ∈ K∗. We then have

Ωs(g) = ε(ζ1)ζjq−jn2(s1+···+sr)Ωs(a
−1
nλ).

Thus it is enough to compute Ωs(a
−1
nλ) for every λ ∈ Λ+.

Lemma 9. For λ ∈ Λ+ we have

Vs(R(a−1
nλ)ϕw0(ω

′)) =

∏r
i=1 L(i)

L(1)r
qnλ·(s−ρ).
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Proof. For this computation it is more convenient to apply the expression (10.3) for the
inner product. Since the inner product is G̃-invariant we have

L(1)r∏r
i=1 L(i)

Vs(R(a−1
nλ)ϕw0(ω

′)) =
∑

a∈Ã∗\Ã

∫
U

ϕw0(a s(w0u) : ω′)ϕK(a s(w0u)anλ : ω′
−1

) du.

If a s(w0u) ∈ supp(ϕw0) = B̃∗w0I∗ = B̃∗w0(I∗ ∩ s(U)) then there exists b ∈ B̃∗ and
u0 ∈ I ∩ U such that a s(w0u) = b s(w0u0) and therefore p(b) = p(a)w0uu

−1
0 w−1

0 ∈ A∗. It
follows in particular that a ∈ Ã∗. This implies that

L(1)r∏r
i=1 L(i)

Vs(R(a−1
nλ)ϕw0) =

∫
U

ϕw0(s(w0u))ϕK(s(w0u)anλ) du.

We have already observed that s(w0u) ∈ B̃∗w0I∗ if and only if u ∈ U ∩K and therefore

L(1)r∏r
i=1 L(i)

Vs(R(a−1
nλ)ϕw0) =

∫
U∩K

ϕK(s(w0u)anλ) du.

By (2.7) we have

a−1
nλs(u)anλ = s(p(anλ)

−1up(anλ))

and since nλ ∈ Λ+ and u ∈ U ∩K we also have p(anλ)
−1up(anλ) ∈ U ∩K. It follows that

s(w0u)anλ ∈ s(w0)anλK
∗ = s($nλ)K∗

and therefore

L(1)r∏r
i=1 L(i)

Vs(R(a−1
nλ)ϕsw0

) = ϕK(s($nλ) : ω′
−1

) = (χρ ω
−1)(s($nλ)).

The lemma follows. �

Now plugging Lemma 9 to the formula (10.5) we get for λ ∈ Λ+

Ωs(a
−1
nλ) =

∏r
i=1 L(i)

L(1)r

∑
w∈W

cw0(w
−1s)qnλ·(w

−1s−ρ).

This can be expressed as the λth Hall-Littlewood polynomial with parameter q−1 as follows.
For λ ∈ Λ+ the Hall-Littlewood polynomial Pλ is a monic, symmetric Laurent polynomial
in the variable x = (x1, . . . , xr) and parameter t defined by

Pλ(x1, . . . , xr; t) =
(1− t)r

Vλ(t)

∑
w∈W

w

(
xλ
∏
i<j

xi − txj
xi − xj

)
where xλ = xλ1

1 · · ·xλrr and

Vλ(t) =
∏
i

vNi(λ)(t)

where Ni(λ) = #{j : 1 ≤ j ≤ n, λj = i} and vN(t) =
∏N

i=1(1 − ti). What we have shown
can be summarized as follows.
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Theorem 5. Let g ∈ G̃, s ∈ Cr. Suppose ζ ∈ µ2n1(C) satisfies (3.4). If g 6∈ K∗Ã∗K∗ then
Ωs,ζ(g) = 0. If g ∈ K∗Ã∗K∗ write

g = ι(ζ1) s($n2e)j k1 a
−1
nλ k2

with ζ1 ∈ µn(F ), k1, k2 ∈ K∗. Then

Ωε
s,ζ(g) = ε(ζ1) ζj q−nρ·λ

Vnλ(q
−1)

V0(q−1)
Y −j Pλ(X1, . . . , Xr; q

−1)

where Xi = qnsi , i = 1, . . . , r and Y = qn2(s1+···+sr).
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