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Abstract. A Weyl group multiple Dirichlet series is a Dirichlet series
in several complex variables attached to a root system Φ. The number
of variables equals the rank r of the root system, and the series satisfies
a group of functional equations isomorphic to the Weyl group W of Φ.
In this paper we construct a Weyl group multiple Dirichlet series over
the rational function field using nth order Gauss sums attached to the
root system of type A2. The basic technique is that of [10, 11]; namely,
we construct a rational function in r variables invariant under a certain
action of W , and use this to build a “local factor” of the global series.

In memory of Serge Lang

1. Introduction

Weyl group multiple Dirichlet series are Dirichlet series in r complex
variables s1, s2, . . . , sr that have analytic continuation to Cr, satisfy a group
of functional equations isomorphic to the Weyl group of a finite root system
of rank r, and whose coefficients are products of nth order Gauss sums. The
study of these series was introduced in [2], which also suggested a method
for proving their analytic continuation and functional equations.

Recently a complete proof of these expected properties has been given in
[12]. In this paper we describe in detail the construction for the root system
A2. There exist alternate constructions of the series defined here. For A2

and n ≥ 2 one falls in the stable range, and therefore our result follows from
the work of [3]. (In fact, this case was treated earlier in [2].) Nevertheless
there are several reasons why a new treatment of A2 is desirable. First,
the methods used here are completely different from those of [3] and give
an alternative technique to construct Weyl group multiple Dirichlet series.
Second, the technique presented here works for a root system Φ of arbitrary
rank and for arbitrary n, with no stability restriction. This is the subject
of [12]; one of the main goals of the present paper is an exposition of our
method in the simplest nontrivial case, namely Φ = A2.

With this latter goal in mind we also adopt certain assumptions to make
the exposition simpler. For instance, we work over a rational function field
to avoid the annoyance of having to deal with Hilbert symbols. We also focus
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on the untwisted case (see §2 for an explanation of this terminology) to avoid
some notational complexities. A comparison with the methods of [2, 10, 11]
indicates how to extend our methods to an arbitrary global field containing
the 2nth roots of unity and to arbitrary twists.

We now describe our main result in greater detail. Let F be a finite
field whose cardinality q is congruent to 1 mod 4n. Let K be the rational
function field F(t), and let O = F[t]. Let Omon ⊂ O be the subset of monic
polynomials. We let K∞ = F[[t−1]] denote the field of Laurent series in t−1.

For x, y ∈ O relatively prime, we denote by
(
x
y

)
the nth order power

residue symbol. We have the reciprocity law

(1.1)
(x
y

)
=
(y
x

)
for x, y monic. The reciprocity law takes this particularly simple form be-
cause of our assumption that the cardinality of F is congruent to 1 mod 4.

Let y 7→ e(y) be an additive character on K∞ with the following property:
if I ⊂ K is the set of all y ∈ K such that the restriction of e to yO is trivial,
then I = O. Fix an embedding ε from the the nth roots of unity in F to C×.
For r, c ∈ O we define the Gauss sum g(r, ε, c) by

g(r, ε, c) =
∑

y mod c

ε
((y

c

))
e
(ry
c

)
.

We will also use the notation gi(r, c) = g(r, εi, c) and g(r, c) = g(r, ε, c). Note
that εi is not necessarily an embedding.

We are now ready to define our double Dirichlet series. Put

(1.2) Z(s1, s2) =

(1−qn−ns1)−1(1−qn−ns2)−1(1−q2n−ns1−ns2)−1
∑

c1∈Omon

∑
c2∈Omon

H(c1, c2)
|c1|s1 |c2|s2

,

where the coefficient H(c1, c2) is defined as follows:

(1) (Twisted multiplicativity) If gcd(c1c2, d1d2) = 1 then

(1.3)
H(c1d1, c2d2)

H(c1, c2)H(d1, d2)
=
( c1

d1

)(d1

c1

)( c2

d2

)(d2

c2

)( c1

d2

)−1(d1

c2

)−1
.

(2) (p-part) If p is prime, then

(1.4)
∑
k,l≥0

H(pk, pl)xkyl =

1 + g(1, p)x+ g(1, p)y + g(1, p)g(p, p)xy + g(1, p)g(p, p2)xy2

+ g(1, p)g(p, p2)x2y + g(1, p)2g(p, p2)x2y2.

Our main result is
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Theorem 1.1. The double Dirichlet series Z(s1, s2) converges absolutely for
Re(si) sufficiently large and has an analytic continuation to all (s1, s2) ∈ C2.
Moreover, Z(s1, s2) satisfies two functional equations of the form

(1.5) σ1 : (s1, s2) 7→ (2−s1, s1+s2−1) and σ2 : (s1, s2) 7→ (s1+s2−1, 2−s2).

These two functional equations generate a subgroup of the affine transfor-
mations of C2 isomorphic to the symmetric group S3.

The precise statement of the functional equations involves a set of double
Dirichlet series Z(s1, s2; i, j), where 0 ≤ i, j ≤ n− 1, and where Z(s1, s2) =∑

i,j Z(s1, s2; i, j); we refer to Theorem 4.1 for details. Moreover, one can
explicitly write down Z(s1, s2) as a rational function in q−s1 , q−s2 . For n = 2,
this was first done by Hoffstein and Rosen [16] (in the case of the rational
function field with q congruent to 1 mod 4), and later by Fisher and Fried-
berg [13] (over a general base field). For n > 2, again working over the
rational function field, the A2 series have been computed by Chinta [8].

As stated above this theorem follows from the work of [2, 3]. In [6], the
authors study the harder problem of constructing twisted Weyl group mul-
tiple Dirichlet series associated to the root system Ar. They construct such
series for A2 and present a conjectural description of the series associated
to Ar for arbitrary r and n. Recently, Brubaker, Bump and Friedberg have
given two different proofs of their conjectures [4, 5], thereby giving a com-
plete definition of Weyl group multiple Dirichlet series associated to Ar.
In fact, in [4] the authors prove that the series they construct are Fourier-
Whittaker coefficients of Eisenstein series on a metaplectic n-fold cover of
GLr+1, thereby establishing Conjecture 1.4 of [3], in the case G = GLr+1.
Consequently, these Weyl group multiple Dirichlet series inherit from the
Eisenstein series functional equations and analytic continuation. Contrast-
ingly, the techniques used in [5] make no use of the connection to Eisenstein
series other than in the rank 1 case.

This is also the case in our paper. Our method has the advantage that
functional equations are essentially built-in to our definition. As in the case
of [2, 3, 6, 10, 11] the Weyl group multiple Dirichlet series are completely
determined by their p-parts and the twisted multiplicativity satisfied by
the coefficients. Our approach is to show that if the p-parts (which can
be expressed as rational functions in the |p|−si) satisfy certain functional
equations, then the global multiple Dirichlet series satisfies the requisite
global functional equations. This leads us to define a certain action of W ,
the Weyl group of the root system Φ, on a certain subring of the field of
rational functions in r indeterminates. This approach, first introduced in [7],
has been carried out in the quadratic case for an arbitrary simply-laced root
system, see [10, 11]. We extend this approach to arbitrary Φ and n in [12].
However, though the basic ideas are clear, the non-obvious group action
required on rational functions can appear unmotivated and complicated in
the general setting. Therefore, we feel it is worthwhile in this paper to work
out in detail the simplest nontrivial case, the rank two root system A2.
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Here is a short plan of the paper. Section 2 describes the Weyl group
action on rational functions that leads to a p-part (1.4) with the desired
functional equations. Although the focus of this paper is untwisted A2, we
work more generally at first and state the full action for a general (simply
laced) root system. We then specialize to untwisted A2. Section 3 reviews
the Dirichlet series of Kubota; in the current framework, these series are
Weyl group multiple Dirichlet series attached to A1. The main result of this
section is Theorem 3.4, which shows that a certain Dirichlet series E(s,m)
built from the function H(c, d) from (1.3)–(1.4) satisfies the same functional
equations as Kubota’s. Finally, in Section 4 we use Theorem 3.4 to complete
the proof of Theorem 1.1. The basic idea is that the (one variable) functional
equations of the E(s,m) induce a bivariate functional equation in the double
Dirichlet series.

2. A Weyl group action

Let Φ be an irreducible simply laced root system of rank r with Weyl
group W . Choose an ordering of the roots and let Φ = Φ+ ∪ Φ− be the
decomposition into positive and negative roots. Let

∆ = {α1, α2, . . . , αr}
be the set of simple roots and let σi be the Weyl group element corresponding
to the reflection through the hyperplane perpendicular to αi. We say that i
and j are adjacent if i 6= j and (σiσj)3 = 1. The Weyl group W is generated
by the simple reflections σ1, σ2, . . . , σr, which satisfy the relations

(2.1) (σiσj)r(i,j) = 1 with r(i, j) =

 3 if i and j are adjacent,
1 if i = j, and
2 otherwise,

for 1 ≤ i, j ≤ r. The action of the generators σi on the roots is

(2.2) σiαj =

 αi + αj if i and j are adjacent,
−αj if i = j, and
αj otherwise.

Define
sgn(w) = (−1)length(w)

where the length function onW is with respect to the generators σ1, σ2, . . . , σr.
Let Λ be the lattice generated by the roots. Any α ∈ Λ has a unique repre-
sentation as an integral linear combination of the simple roots:

(2.3) α = k1α1 + k2α2 + · · ·+ krαr.

We denote by
d(α) = k1 + k2 + · · ·+ kr

the usual height function on Λ and put

dj(α) =
∑
i∼j

ki,
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where i ∼ j means that the nodes labeled by i and j are adjacent in the
Dynkin diagram of Φ. Introduce a partial ordering on Λ by defining α � 0
if each ki ≥ 0 in (2.3). Given α, β ∈ Λ, define α � β if α− β � 0.

Let A = C[Λ] be the ring of Laurent polynomials on the lattice Λ. Hence
A consists of all expressions of the form f =

∑
β∈Λ aβx

β, where aβ ∈ C
and almost all are zero, and the multiplication of monomials is defined by
addition in Λ: xβxλ = xβ+λ. We identify A with C[x1, x

−1
1 , . . . , xr, x

−1
r ] via

xαi 7→ xi.
Let p be a prime in O of norm p. Let Ã be the localization of A at the

multiplicative subset of all expressions of the form

{1− pnd(α)xnd(α), 1− pnd(α)−1xnd(α) | α ∈ Φ+}.

The group W will act on Ã, and the action will involve the Gauss sums
gi(1, p).1 There is one further parameter necessary for the definition. Let
` = (l1, . . . , lr) be an r-tuple of nonnegative integers. The tuple ` is called a
twisting parameter ; it should be thought of as corresponding to the weight∑

(lj + 1)$j , where the $j are the fundamental weights of Φ. The case
` = (0, . . . , 0) is called the untwisted case. For each choice of ` we will define
an action of the Weyl group W on Ã.

We are now ready to define the W -action. First, we define a “change of
variables” action on Ã as follows. for x = (x1, x2, . . . , xr) define σix = x′,
where

(2.4) x′j =

 pxixj if i and j are adjacent,
1/(p2xj) if i = j, and
xj otherwise.

One can easily check that if fβ(x) = xβ is a monomial, then

(2.5) fβ(wx) = qd(w−1β−β)xw
−1β.

Next, write f ∈ A as
f(x) =

∑
β

aβxβ.

Given integers k, i, j, define

fk(x; i, j) =
∑

βk=i mod n
dk(β)=j mod n

aβxβ.

We define the action of a generator σk ∈W on f as follows:

(2.6) (f |`σk)(x) =

(pxk)lk
n−1∑
i=0

n−1∑
j=0

(Pij(xk)fk(σkx; i, j − lk) +Qij(xk)fk(σkx; j + 1− i, j − lk))

1We remark that our normalization for Gauss sums follows [3, 6] and not [10, 11].
See [11, Remark 3.12] for a discussion of this.
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where

Pij(x) = (px)1−(−2i+j+1)n
1− 1/p

1− pn−1xn
,

Qij(x) = −g∗2i−j−1(1, p)(px)1−n 1− pnxn

1− pn−1xn
,

g∗i (1, p) =
{
gi(1, p)/p if n - i,
−1 otherwise.

Here (i)n ∈ {0, . . . , n − 1} is the remainder upon division of i by n. We
extend this action to all of Ã first extending (2.6) to all of A by linearity,
and then given f/g ∈ Ã by defining

(f
g

∣∣∣
`
σk

)
(x) =

(f |`σk)(x)
g(σkx)

.

One can show that this action of the generators extends to an action of W
on Ã; in particular the defining relations (2.1) are satisfied.

Now we specialize to the focus of this paper: we set Φ = A2 and ` =
(0, 0). To simplify notation we write x, y for the variables of Ã. With these
simplifications the action of σ1 on f ∈ A takes the form

(2.7) (f |σ1)(x, y) =
n−1∑
i=0

n−1∑
j=0

(
Pij(x)f1

(
1
p2x

, pxy; i, j
)

+Qij(x)f1

(
1
p2x

, pxy; j + 1− i, j
))

;

the action of σ2 is similar. An invariant rational function for this action is

(2.8) h(x, y) =
N(x, y)

(1− pn−1xn)(1− pn−1yn)(1− p2n−1xnyn)
,

where the numerator N(x, y) is

(2.9) N(x, y) = N (p)(x, y) =

1 + g1(1, p)x+ g1(1, p)y + g1(1, p)g1(p, p)xy + pg1(1, p)g2(1, p)xy2+

pg1(1, p)g2(1, p)x2y + pg1(1, p)2g2(1, p)x2y2.

To compare this with (1.4), note that pg2(1, p) = g1(p, p2). Also note that
only the numerator of (2.8) appears in (1.4) because the denominator is
incorporated in the factors appearing at the front of (1.2).
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Let us write h(x, y) as

h(x, y) =
∑
k,l≥0

a(pk, pl)xkyl(2.10)

=
∑
l≥0

yl

(
n−1∑
i=0

∑
k=i mod n

a(pk, pl)xk
)

=
∑
l≥0

n−1∑
i=0

ylh(p,l)(x; i),

say.
The following two lemmas are proved by a direct computation.

Lemma 2.1. We have N (p)(x, 0) = 1 + g1(1, p)x,N (p)(0, y) = 1 + g1(1, p)y
and for j = l mod n, and 0 ≤ i ≤ n− 1,

h(p,l)(x; i) = (px)lPij(x)h
(

1
p2x

; i
)

+ (px)lQij(x)h
(

1
p2x

; l + 1− i
)
.

Lemma 2.2. Let

f (p,l)(x; i) = h(p,l)(x; i)− δg2i−l−1(1, p)p(2i−l−2)nx(2i−l−1)nh(p,l)(x, l + 1− i)
where δ = 0 if l − 2i = −1 mod n and is 1 otherwise. Then

f (p,l)(x; i) = (px)l−(l−2i)nf (p,l)
(

1
p2x

; i
)
.

3. Kubota’s Dirichlet series

The basic building blocks of the multiple Dirichlet series are the Kubota
Dirichlet series constructed from Gauss sums [17, 18]. Let m be a nonzero
polynomial in O and let s be a complex variable. These series are defined
by

(3.1) D(s,m) = (1− qn−ns)−1
∑

d∈Omon

g(m, d)
|d|s

and

(3.2) D(s,m; i) = (1− qn−ns)−1
∑

deg d=i mod n
d∈Omon

g(m, d)
|d|s

.

Kubota proved that these series have meromorphic continuation to s ∈ C
with possible poles only at s = 1 ± 1/n and satisfy a functional equation.
Actually, Kubota worked over a number field, but the constructions over a
function field are identical.

If the degree of m is nk+ j, where 0 ≤ j ≤ n−1, this functional equation
takes the form

(3.3) D(s,m) = |m|1−s
∑

0≤i≤n−1

Tij(s)D(2− s,m; i),
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where the Tij(s) are certain quotients of Dirichlet polynomials. For fixed
s the Tij depend only on 2i − j. We will not need to know anything more
about the functional equation, but a more explicit description can be found
in Hoffstein [15] or Patterson [20].

Given a set of primes S, we define

(3.4) DS(s,m) = (1− qn−ns)−1
∑

(d,S)=1
d∈Omon

g(m, d)
|d|s

.

If m0 =
∏

p∈S p we sometimes write Dm0(s,m) for DS(s,m).
We record some properties of Gauss sums that we will use repeatedly.

Proposition 3.1. Let a,m, c, c′ ∈ O.

(i) If (a, c) = 1 then gi(am, c) =
(
a
c

)−1
gi(m, c).

(ii) If (c, c′) = 1 then

gi(m, cc′) = gi(m, c)gi(m, c′)
( c
c′

)2i
.

Using this proposition we can relate the functions DS to the functions DS′

for different sets S and S′. This is the content of the following two lemmas.

Lemma 3.2. Let p ∈ Omon be prime of norm p. For an integer i with
0 ≤ i ≤ n− 1 and m1,m2, p all pairwise relatively prime, we have

Dm1(s,m2p
i) = Dpm1(s,m2p

i) +
g(m2p

i, pi+1)
p(i+1)s

Dpm1(s,m2p
(n−i−2)n).

More generally,

D(s,m) =
∑
S0⊂S

(∏
p∈S0

g(m, pi+1)
|p|(i+1)s

)
DS

(
s,
∏
p∈Sc

0

pi||m

pi ·
∏
p∈S0

pi||m

p(n−i−2)n

)
.
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Proof. We prove only the first part of the Lemma. For p,m1,m2 as in the
statement,

(1− qn−ns)Dm1(s,m2p
i) =

∑
(d,m1)=1
d∈Omon

g(m2p
i, d)

|d|s

=
∑
k≥0

∑
(d,m1p)=1
d∈Omon

g(m2p
i, dpk)

|d|spks

=
∑
k≥0

∑
(d,m1p)=1
d∈Omon

g(m2p
i, d)g(m2p

i, pk)
|d|spks

( d

p2k

)

=
∑

(d,m1p)=1
d∈Omon

g(m2p
i, d)

|d|s

∑
k≥0

g(m2p
i, pk)

pks

( d

p2k

) .

The Gauss sum in the inner sum vanishes unless k = 0 or i+ 1. This proves
the Lemma. �

Inverting the previous Lemma, we obtain

Lemma 3.3. If 0 ≤ i ≤ n− 2 and m1,m2, p as above,

Dpm1(s,m2p
i) =

Dm1(s,m2p
i)

1− |p|n−1−ns −
g(m2p

i, pi+1)
|p|(i+1)s

Dm1(s,m2p
n−i−2)

1− |p|n−1−ns ,

and if i = n− 1,

Dpm1(s,m2p
i) =

Dm1(s,m2p
i)

1− |p|n−1−ns .

Now suppose that N(x, y) = N (p)(x, y) is the polynomial from (2.9). We
define a function H on pairs of powers of p by setting H(pk, pl) to be the
coefficient of xkyl in N(x, y):

N(x, y) =
∑

H(pk, pl)xkyl.

We extend H to all pairs of monic polynomials by the twisted multiplica-
tivity relation: if gcd(cd, c′d′) = 1, then we put

(3.5) H(cc′, dd′) = H(c, d)H(c′, d′)
( c
c′

)2( d
d′

)2( c
d′

)−1(c′
d

)−1
.

In particular, note that

(3.6) H(d, 1) = g(1, d).
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Now consider the Dirichlet series

(3.7) E(s,m) = (1− qn−ns)−1
∑

d∈Omon

H(d,m)
ds

.

That E(s,m) satisfies the same functional equation as D(s,m) is the main
result of this section:

Theorem 3.4. Let m ∈ Omon be a monic polynomial of degree nk+j, where
0 ≤ j ≤ n− 1. Then

E(s,m) = |m|1−s
∑

0≤i≤n−1

Tij(s)E(2− s,m; i).

Proof. Before tackling the general case, we first consider m = pl for a prime
p and l > 0. Then

E(s, pl) = (1− qn−ns)−1
∑

d∈Omon
(d,p)=1

∑
k≥0

H(dpk, pl)
ds|p|ks

= (1− qn−ns)−1
∑

d∈Omon
(d,p)=1

∑
k≥0

H(pk, pl)g(1, d)
|p|ksds

( d

p2k−l

)
, by (3.5) and (3.6)

=
∑
k≥0

H(pk, pl)
|p|ks

Dp(s, p(l−2k)n)

=
n−1∑
j=0

Dp(s, p(l−2j)n)

 1
|p|js

∑
k≥0

H(pj+nk, pl)
|p|nks


=

n−1∑
j=0

Dp(s, p(l−2j)n)h(p,l)(|p|−s; j),

where h(p,l) was introduced in (2.10). Using Lemma 3.3 the previous expres-
sion becomes

n−1∑
j=0

D(s, p(l−2j)n)h(p,l)(|p|−s; j)

−
n−1∑
j=0

δj
g(p(l−2j)n , p(l−2j)n+1)
|p|((l−2j)n+1)s

D(s, p(2j−l−2)n)h(p,l)(|p|−s; j),

(3.8)

where δj = 0 if l − 2j ≡ n− 1(n) and is 1 otherwise. Replace j by l + 1− j
in the second summation and regroup to conclude

(3.9) E(s, pl) =
n−1∑
j=0

D(s, p(l−2j)n)f (p,l)(|p|−s; j).
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(Note the use of the identity n − 2 − (l − 2j)n = (2j − l − 2)n.) Using the
functional equations (3.3) of D and f (p,l) (Lemma 2.2), we write

E(s, pl)|p|−(1−s)l

=
n−1∑
j=0

n−1∑
i=0

Ti,(l−2j)n deg p(s)D(2− s, p(l−2j)n ; i)f (p,l)(2− s; j)

=
n−1∑
i,j=0

Ti−j deg p,(l−2j)n deg p(s)D(2− s, p(l−2j)n ; i− j deg p)f (p,l)(2− s; j)

=
n−1∑
i=0

Ti,l deg p(s)

n−1∑
j=0

D(2− s, p(l−2j)n ; i− j deg p)f (p,l)(2− s; j)


=

n−1∑
i=0

Ti,l deg p(s)E(2− s, pl; i),

(3.10)

where the third equality comes from our remark that the Tij depend only
on 2i− j. This is the functional equation we wished to prove, in the special
case m = pl.

The argument for general m is similar. Let m = pl11 pl22 · · · plrr where the pi
are distinct primes and the li are positive. Then

E(s;m) = (1− qn−ns)−1
∑

d∈Omon

H(d,m)
|d|s

= (1− qn−ns)−1
∑

d∈Omon
(d,m)=1

∑
k1,...,kr≥0

H(dpk11 · · · pkr
r , p

l1
1 · · · plrr )

|d|s|p1|k1s · · · |pr|krs

= (1− qn−ns)−1
∑

d∈Omon
(d,m)=1

∑
k1,...,kr≥0

H(d, 1)H(pk11 , p
l1
1 ) · · ·H(pkr

r , p
lr
r )

|d|s|p1|k1s · · · |pr|krs

×
( d
m

)−1( d

pk11 · · · p
kr
r

)2∏
a6=b

(pka
a

pkb
b

)(plaa

plbb

)(pka
a

plbb

)−1

=
∏
a6=b

(plaa

plbb

) n−1∑
j1=0

· · ·
n−1∑
jr=0

Dm(s, p(l1−2j1)n

1 · · · p(lr−2jr)n
r )

× h(p1,l1)(s; j1) · · ·h(pr,lr)(s; jr)
∏
a6=b

(p
ja
a

p
jb
b

)(p
ja
a

plbb

)−1
.

(3.11)
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Denote for the moment by C(j1) = C(j1, . . . , jr) the product of residue
symbols

(3.12) C(j1) =
∏
a6=b

(p
ja
a

p
jb
b

)(p
ja
a

plbb

)−1
.

Letting Ji = (li − 2ji)n for i = 1, . . . r, we have

(1− |p1|n−1−ns)Dm(s, pJ1
1 · · · p

Jr
r )C(j1) = Dp2···pr(s, pJ1

1 · · · p
Jr
r )C(j1)

−δj1
g(pJ1

1 · · · pJr
r , p

J1+1
1 )

|p1|(J1+1)s
Dp2···pr(s, p(2j1−l1−2)n

1 pJ2
2 · · · p

Jr
r )C(j1)

(3.13)

by Lemma 3.3. In the second term on the right hand side, replace j1 by
l1 + 1− j1. For δj1 6= 0 this gives

g(p(2j1−l1−2)n

1 pJ2
2 · · · pJr

r , p
(2j1−l1−1)n

1 )
|p1|((2j1−l1−1)n)s

Dp2···pr(s, pJ1
1 pJ2

2 · · · p
Jr
r )C(l1 − j1 + 1).

(3.14)

The Gauss sum can be written as

(3.15)
(pJ2

2 · · · pJr
r

p
2j1−l1−1
1

)−1
g(p(2j1−l1−2)n

1 , p
(2j1−l1−1)n

1 ),

and C(l1 − j1 + 1) is

(3.16)
(pJ2

2 · · · pJr
r

p
l1−j1+1
1

)−1(p
j2
2 · · · p

jr
r

pl11

)−1
( ∏

a6=b
a,b6=1

(p
ja
a

p
jb
b

)(p
ja
a

plbb

)−1
)
.

Taking the product of (3.15) and (3.16) yields

(pJ2
2 · · · pJr

r

p
j1
1

)−1(p
j2
2 · · · p

jr
r

pl11

)−1
g(p(2j1−l1−2)n

1 , p
(2j1−l1−1)n

1 )

( ∏
a6=b
a,b 6=1

(p
ja
a

p
jb
b

)(p
ja
a

plbb

)−1
)

= g(p(2j1−l1−2)n

1 , p
(2j1−l1−1)n

1 )C(j1).

(3.17)

Therefore, continuing from the last line of (3.11),

E(s,m) =
∏
a6=b

(plaa

plbb

) n−1∑
j1=0

· · ·
n−1∑
jr=0

Dm′(s, p
(l1−2j1)n

1 · · · p(lr−2jr)n
r )

×
∏
a6=b

(p
ja
a

p
jb
b

)(p
ja
a

plbb

)−1
f (p1,l1)(s; j1)h(p2,l2)(s; j2) · · ·h(pr,lr)(s; jr),

(3.18)
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where m′ = pl22 · · · plrr . Repeating this procedure to remove the primes from
m one at a time, we find that up to a constant of modulus one, E(s,m) is
equal to

n−1∑
j1=0

· · ·
n−1∑
jr=0

D(s, pJ1
1 · · · p

Jr
r )

(
r∏

a=1

f (pa,la)(s; ja)

)∏
a6=b

(p
ja
a

p
jb
b

)(p
ja
a

plbb

)−1
.(3.19)

We may now apply the functional equations of D and the f (pa,la) as in (3.10)
to conclude that E(s,m) satisfies the functional equation

(3.20) E(s,m) = |m|1−s
n−1∑
i=0

Ti,degm(s)E(2− s,m; i).

This completes the proof of the theorem. �

For later use, we record the following bound:

Proposition 3.5. For all ε > 0, m ∈ O and 0 ≤ i < n,

(s−1− 1
n)(s−1 + 1

n)E(s,m; i)�ε


1 for Re(s) > 3

2 + ε

|m|
1
2 +ε for 1

2 − ε < Re(s) < 3
2 + ε

|m|1−s+ε for Re(s) < 1
2 − ε

Proof. Use the meromorphy and functional equation of E(s,m) together
with the convexity principle, cf. [14, Eq. (2.3)] and [19, Propostion 8.4]. �

4. The double dirichlet series

Recall the definition of the double Dirichlet series from (1.2)–(1.4). In this
section we show that Z(s1, s2) has a meromorphic continuation to s1, s2 ∈ C
and satisfies a group of functional equation isomorphic to W. In [2], the au-
thors show in detail how the analytic continuation of a Weyl group multiple
Dirichlet series follows from the functional equations. Therefore we concen-
trate on establishing the functional equations of Z(s1, s2).

Actually we need to consider slightly different series. For integers 0 ≤
i, j ≤ n− 1 we define

Z(s1, s2; i, j) =

(1− qn−ns1)−1(1− qn−ns2)−1(1− q2n−ns1−ns2)−1
∑

m∈Omon
degm=i mod n

∑
d∈Omon

deg d=j mod n

H(d,m)
|m|s1 |d|s2

.

(4.1)

We further introduce the notation

Z(s1, s2; i, ∗) =
∑
j

Z(s1, s2; i, j)

and
Z(s1, s2; ∗, j) =

∑
i

Z(s1, s2; i, j).
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These series are absolutely convergent for Re(s1),Re(s2) > 3/2. In fact, we
can do a little better. Summing over d first yields

Z(s1, s2; i, ∗) = (1− qn−ns1)−1(1− qn−ns2)−1(1− q2n−ns1−ns2)−1

×
∑

m∈Omon
degm=i mod n

 1
|m|s1

∑
d∈Omon

H(d,m)
|d|s2


= (1− qn−ns1)−1(1− q2n−ns1−ns2)−1

∑
m∈Omon

degm=i mod n

E(s2,m)
|m|s1

(4.2)

By the convexity bound of Proposition 3.5, this representation of Z(s1, s2; i, ∗)
is seen to meromorphic for Re(s1) > 0,Re(s2) > 2. Alternatively, sum-
ming over m first we deduce that Z(s1, s2; i, ∗) is meromorphic for Re(s2) >
0,Re(s1) > 2. Let R be the tube domain that is the union of these three
regions of initial meromorphy:

R = {Re(s1),Re(s2) > 3/2} ∪ {Re(s1) > 0,Re(s2) > 2}
∪ {Re(s2) > 0,Re(s1) > 2}.

Let the Weyl group W act on C2 by

(4.3) σ1 : (s1, s2) 7→ (2−s1, s1 +s2−1), σ2 : (s1, s2) 7→ (s1 +s2−1, 2−s2).

Let F be the real points of a closed fundamental domain for the action of
W on C2:

F = {Re(s1),Re(s2) ≥ 1}.
One can easily see that RrF ∩R is compact. Therefore, by the principle of
analytic continuation and Bochner’s tube theorem [1], to prove that Z(s1, s2)
has a meromorphic continuation to C2 it suffices to show that the functions
Z(s1, s2; i, j) satisfy functional equations as (s1, s2) goes to (2−s1, s1+s2−1)
and (s1 + s2 − 1, 2− s2). For details, we refer to [2, Section 3].

To prove the σ2 functional equation, we begin with (4.2) and write

Z(s1, s2; i, ∗) = (1− qn−ns1)−1(1− q2n−ns1−ns2)−1
∑

m∈Omon
degm=i mod n

E(s2,m)
|m|s1

= (1− qn−ns1)−1(1− q2n−ns1−ns2)−1

×
∑

m∈Omon
degm=i mod n

|m|1−s2
|m|s1

n−1∑
j=0

Tji(s2)E(2− s2,m; j), by Thm. 3.4

=
n−1∑
j=0

Tji(s2)Z(s1 + s2 − 1, 2− s2; i, j)

The σ1 functional equation is proved similarly.
We conclude that
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Theorem 4.1. The double Dirichlet series has a meromorphic continuation
to s1, s2 ∈ C and is holomorphic away from the hyperplanes

s1 = 1± 1
n , s2 = 1± 1

n and s1 + s2 = 2± 1
n .

Furthermore, Z(s1, s2) satisfies the functional equations

Z(s1, s2) =
∑
i,j

Tji(s2)Z(s1 + s2 − 1, 2− s2; i, j)

=
∑
i,j

Tij(s1)Z(2− s1, s1 + s2 − 1; i, j).

References

1. S. Bochner, A theorem on analytic continuation of functions in several variables, Ann.
of Math. (2) 39 (1938), no. 1, 14–19.

2. B. Brubaker, D. Bump, G. Chinta, S. Friedberg, J. Hoffstein, Weyl group multiple
Dirichlet series I, in Multiple Dirichlet Series, Automorphic Forms, and Analytic
Number Theory, Proc. Sympos. Pure Math., 75, Amer. Math. Soc., Providence, RI,
2006.

3. B. Brubaker, D. Bump, and S. Friedberg, Weyl group multiple Dirichlet series II: The
stable case, Invent. Math. 165 (2006), 325–355.

4. B. Brubaker, D. Bump, and S. Friedberg. Weyl group multiple Dirichlet Series, Eisen-
stein series and crystal bases, Submitted.

5. B. Brubaker, D. Bump, and S. Friedberg. Weyl Group Multiple Dirichlet Series: Type
A Combinatorial Theory, Submitted.

6. B. Brubaker, D. Bump, S. Friedberg, and J. Hoffstein, Weyl group multiple Dirichlet
series. III. Eisenstein series and twisted unstable Ar, Ann. of Math. (2) 166 (2007),
no. 1, 293–316.

7. G. Chinta, Mean values of biquadratic zeta functions, Invent. Math. 160 (2005), 145–
163.

8. G. Chinta. Multiple Dirichlet series over rational function fields, Acta Arith.,
132(4):377–391, 2008.

9. G. Chinta, S. Friedberg and J. Hoffstein, Multiple Dirichlet series and automorphic
forms, in Multiple Dirichlet Series, Automorphic Forms, and Analytic Number Theory,
Proc. Sympos. Pure Math., 75, Amer. Math. Soc., Providence, RI, 2006.

10. G. Chinta, S. Friedberg, and P. E. Gunnells. On the p-parts of quadratic Weyl group
multiple Dirichlet series, J. Reine Angew. Math., 623:1–23, 2008.

11. G. Chinta and P. E. Gunnells, Weyl group multiple Dirichlet series constructed from
quadratic characters, Invent. Math. 167 (2007), no.2, 327–353.

12. G. Chinta and P. E. Gunnells, Constructing Weyl group multiple Dirichlet series, J.
Amer. Math. Soc., to appear.

13. B. Fisher and S. Friedberg, Double Dirichlet series over function fields, Compos. Math.
140 (2004), no. 3, 613–630.

14. S. Friedberg, J. Hoffstein, and D. Lieman, Double Dirichlet series and the n-th order
twists of Hecke L-series, Math. Ann. 327 (2003), no. 2, 315–338.

15. J. Hoffstein, Theta functions on the n-fold metaplectic cover of SL(2)—the function
field case, Invent. Math. 107 (1992), no. 1, 61–86.

16. J. Hoffstein and M. Rosen, Average values of L-series in function fields, J. Reine
Angew. Math. 426 (1992), 117–150.

17. T. Kubota, Some results concerning reciprocity law and real analytic automorphic
functions, 1969 Number Theory Institute (Proc. Sympos. Pure Math., Vol. XX, State



16 GAUTAM CHINTA AND PAUL E. GUNNELLS

Univ. New York, Stony Brook, N.Y., 1969), pp. 382–395. Amer. Math. Soc., Provi-
dence, R.I., 1971.

18. T. Kubota, Some number-theoretical results on real analytic automorphic forms, Sev-
eral Complex Variables, II (Proc. Internat. Conf., Univ. Maryland, College Park, Md.,
1970), pp. 87–96. Lecture Notes in Math., Vol. 185, Springer, Berlin, 1971.
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