SUMS OF L-FUNCTIONS OVER RATIONAL FUNCTION FIELDS

GAUTAM CHINTA AND JOEL B. MOHLER

ABSTRACT. Friedberg, Hoffstein and Lieman have constructed two related
multiple Dirichlet series from quadratic and higher-order L-functions and Gauss
sums. We compute these multiple Dirichlet series explicitly in the case of the
rational function field. This is done by utilizing the functional equation of the
L-functions and the functional equation relating the two multiple Dirichlet se-
ries. We also point out a very simple correspondence between these series and
their p-parts.

1. INTRODUCTION

Let n be an integer greater than or equal to 2, IF; the finite field with ¢ elements,
and K = F,(¢) the rational function field. The main result of this paper is the
explicit computation of an infinite sum of L-functions associated to n‘" order Hecke
characters of K. The infinite sums we consider are examples of double Dirichlet
series in two complex variables, and can be written as power series in ¢—° and ¢~ %.
In fact it will turn out that the series we construct will be rational functions in ¢~
and ¢~ ".

These series are function field analogs of the series studied by Friedberg, Hoffstein
and Lieman in [FHL02]. In that paper, working over a number field F' containing
the n'" roots of unity, the authors study a double Dirichlet series that is roughly
of the form

S

> L(s, Xm)(Nm) ™",

where the sum is over integral ideals m of F, the character x,, is the n'® order

power residue symbol associated to m, and Nm denotes the absolute norm. The
authors show that this double Dirichlet series has a meromorphic continuation
to all (s,w) € C? and satisfies a group of functional equations relating it to a
second series constructed from Gauss sums. The main ingredients in the proof
are the functional equation of L(s, . ), properties of the Fourier coefficients of
the metaplectic Eisenstein series on the n-fold cover of GLo, and Bochner’s tube
theorem.

In the case n = 2, these ideas were applied by Fisher and Friedberg [FF04] in the
context of a general function field to show the rationality of double Dirichlet series
constructed from quadratic L-functions. The case n = 2 is somewhat easier because
the Gauss sum arising in the functional equation of a quadratic Hecke L-series is
trivial, and the theory of metaplectic Eisenstein series is not needed.
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In this paper, we follow a more elementary method originally introduced in
[CFHO6] in the case n = 2. We exploit the fact that
> ()
dery N\
deg d=k
vanishes if k is bigger than or equal to the degree of m, unless m is a perfect n'"
power. Here (%) = Xm(d) denotes the nt" power residue symbol for m, d relatively

prime. If m and d are monic, then we have the reciprocity law

o -()

when ¢ is congruent to 1 mod 2n, see e.g. Rosen [Ros02], Theorem 3.5.

We now describe our results more precisely. We will define two double Dirichlet
series, explicitly compute them as rational functions in ¢7*°, ¢~ and show that
they satisfy functional equations that relate them to one another. We begin by
defining two multiplicative weighting factors a(d, m) and b(d, m) for pairs of monic
polynomials, as in [FHL02]. For a monic prime polynomial p, let

(1.2) alp?, 5 = {pl("‘”d/” if d = min(j, k) and d = 0 mod n

0 otherwise,
and
1 ifk=0
k/2—1 e _
Ip| (p|—=1) ifj>kk=0modn,k>0
(1.3)  b(p?,pk) = { —Jp|*/*! if j=k—1,k=0mod n,k >0
|p| (k172 if j=k—1,k#0modn, k>0
0 otherwise.
Then define
a(d,m) = ] a(.p*), b(d,m)= [ b’ p").
pl|ld pi||d
pklim pklim

Here |d| denotes the norm gd¢84.

Let O denote Fy[t] and O,,op the set of monic polynomials in Fy[¢]. Let (o(s)
be the zeta function of the ring O, that is

Co(s)=(1—q"*)7"

The first double Dirichlet series we consider is

Xmy (d)a(d, m)
1.4 Z1(s,w) = — e
( ) ( ) dﬂ'ﬂezanon ‘m‘w|d|s

where my is the n'® powerfree part of m and d is the part of d relatively prime to
mg. We show in Section 2 that this can be rewritten in terms of L-functions

(1.5) Zi(s,w)= > L Xmo) p . .
MEOmon

where the P(s;m) are finite Euler products defined in Proposition 2.1.
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The second multiple Dirichlet series is built from Gauss sums. See Section 2 for
the precise definition of the Gauss sum g(r, €, x,,). Then

9(1, €, Xmo) Xmo (d)b(d,m)
| |m|w|d|s

(1.6) Zs(s,w) = Co(nw — 24 1) Z

2
d,mEOmon

where m, is the squarefree part of the n*™ powerfree part of m.
We can now state our main theorems. The first describes a set of functional
equations relating Z; and Zs. Specifically, define

. Xmo (d)a(d, m)
Zswib) = D el
d,mEOmon
deg m=i (mod n)

and

9(17 € Xmo) Xmo (dA)b(dv m)
[, | [m|*|d|*

n
Zs(s,w;6;) = Co(nw — 3 +1) E
d,mEOmon
degm=i (mod n)

Theorem 1.1. We have the functional equation

g1 11__(1‘1;1 Zo(1—s,w+s—1;6) fori=0

qzs—1q1/2—s?\(/€qf') Zy(1—s,w+s—1:6) foro<i<n.

A (57 w; 51‘) = {

The finite field Gauss sum 7(€') is defined in the following section.

This is proved in Section 4.
The second main theorem is the following:

Theorem 1.2. The double Dirichlet series Z1 and Zs are rational functions of

r=¢q % andy =q . Ezxplicitly,
1—q?zy
1.7 Z1(s,w) = ,
() 1) (1= qz)(1 —qy)(1 — ¢ Tany™)
and
(1.8)
Zz(s w) _ 1— q3n/2xn71yn + Z?;ll (T(Gz)qulJrz/szflyz _ T(Ez)q31/2xzyz)

(1 —qz)(1 — gn/2Fym)(1 — g*n/2amym)

This theorem is proved in Section 6.

We conclude this introduction with some remarks to put our results in the larger
context of Weyl group multiple Dirichlet series. The general theory of Weyl group
multiple Dirichlet series was introduced in [BBC106] in order to unify and extend
several constructions which had previously been studied. In particular the series 7
and Zs of the present paper are expected to be n — 2 fold residues of the n variable
Weyl group multiple Dirichlet series associated to the root system A,. Brubaker
and Bump [BB06] have verified this in the cubic case n = 3. This case is manageable
because, thanks to Patterson [Pat77a, Pat77b], we have a complete understanding
of the Fourier coefficients of the theta function on the 3-fold metaplectic cover of
S Lo which arise when we take the residues of the Dirichlet series constructed from
cubic Gauss sums. For n > 3 the precise nature of the coefficients of the n-fold cover
theta functions remains mysterious. Nevertheless, there is much evidence in favor of
the expectation that the two series constructed by Friedberg, Hoffstein and Lieman



4 GAUTAM CHINTA AND JOEL B. MOHLER

coincide with a multiresidue of a Weyl group multiple Dirichlet series. Indeed,
one of the motivations of this paper is to lay the groundwork for investigating this
question for n > 3 by explicitly computing and comparing the the relevant multiple
Dirichlet series in the case of the rational functional field. For example, in [Chi08]
the first named author has explicitly computed the cubic A3 multiple Dirichlet
series and checked that residues of this series give the two series in Theorem 1.2 of
this paper when n = 3. See also [CG] for further examples of explicit computations
of double Dirichlet series defined over the rational function field.

Finally we point out a curious connection between the series Z;, Z5 of Theorem
1.2 and their p-parts. Define the following generating series Hp, Hy constructed
from the respective p-parts of Z; and Zs,

Hy(X,Y) =Y a(p’,p*)X’'Y*, and
J,k>0
(1.9) , 1 .
Ho(XY) = (1= ) 3 o ph Sy,
X k
4.k>0 by |

where X = [p|™® and Y = |p|~". We will prove

(1.10)
1-XY
H{(X.Y)=
&) = oy - ey
1— |p|”/2—1x(n71)yn + Z?:_ll 9(1\»;‘7?)‘@)X(ifl)Yi|p|(1—1)/2(1 _ X)
HQ(X,Y) =

(1= X)(1 = [p|"2ym)(1 = [p[ X" ym)
Note that the substitutions
X — qx,

Y — qy,

(1.11) Ip| — 1/g, and

9(L,ep)/VIpl = 7(e")/Vg forl<i<r

transform H; into Z; for ¢ = 1,2. This similarity between a rational function field
multiple Dirichlet series and its p-part seems to hold in a much wider context, see
e.g. [CFHO06, Chi08].

2. (GAUSS SUMS AND L-FUNCTIONS

In this section we will define the Gauss sums and L-functions that are the con-
stituents of our double Dirichlet series. We will mostly follow the notation of Pat-
terson [Pat 2] but with some adjustments to facilitate comparison with [FHL02].

As in the introduction, K is the rational function field F,(¢) with polynomial
ring O = F,[t]. We let Oy, denote the subset of O consisting of monic polynomials
and let Ko = F,((¢)) denote the field of Laurent series in t~1. Let p,, = {a € Fy :

a™ =1} and let x : FX — p,, be the character a a

In order to define Gauss sums we first need an additive character on K. Let
eo be a nontrivial additive character on the prime field IF of ;. Use this to define
a character e, of Fy by e, (a) = eo(Trg,/ra). Let w be the global differential da:/a?.
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Finally define the character e of K, by e(y) = ex(Ress(wy)) for y € K. Note
that

{ye K:ely0 =1} =0.

For any ¢ € O, we’ll use cq to indicate the n*"-power free part of ¢ and ¢, for the
squarefree part of cy. Fix an embedding € from the the n' roots of unity of F, to
C*. For r,c € O we define the Gauss sum

_ ¥ ry
g(T,E,Xc)_ Z 6((C))e<0b>.
y mod ¢,

We also need the Gauss sums associated to the finite field IF,. These are defined by

() =Y e (1) e ()

jeF,
We define the L-function associated to x., by
(2.1) L(s,xm) = Y Xm(d)]d]™".
d€Omon

When m is n*'-power free, the L-function satisfies a functional equation that we
will describe now. Denote the conductor of the character x,, by cond x,,. Thus

|m,|  degm =0(n)
| cond xm | =
qlmy|  degm # 0(n).

Then the completed L-function

(2.2) L*(8, Xm) = { 1,}175 L(s,xm) degm=0(n)

L(s, xXm) degm # 0(n).

satisfies the functional equation

* _ 2s—1 1/2—s g (1,6, Xm) . .
(2.3) L*(s,Xm) = ¢°°~ | cond x| Teond x| /2 condxm|1/2L (1—5,Xm)
where
0 (1, € xm) = g(1,€,Xm) degm =0 (mod n)
e 7(e)g(1,€ xm) degm=i%0 (mod n).

From the functional equation, we see that L(s, x,,) is a polynomial in ¢~° whose

degree is one less than the degree of m,, if m is not a perfect n'® power. If m = 1,
we recover the zeta function

(2.4) Cols)= Y |d|75:$.

1
d€Omon

Expanding the components at infinity, we have the following functional equations
when m is n'P-power free, degm =i (mod n):

_ —sg(Lexm) 1—g~° - .
¢ 1‘mb|1/2 Sg\(m:\i(/z) 1_((1(175) L(1—5Xm) i=0

glmy )12~ KIS I (1 — 5, %m) 0 <i<n.

(25) L(57Xm) = 2571(

q

This functional equation will be used in Section 4 to relate Z; and Z,.
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We now introduce a modified L-function related to (2.1) by inserting the weight-
ing factor a(d, m). Define

(2.6) L gm)= 3 Xm(daldm)
4O |d|

where d is the part of d relatively prime to mg. Since the weighting function is
multiplicative, L(s, X.,) is an Euler product,

H (1 + Xmo(ﬁ)a(pam) + Xmo(ﬁZ)a(p27m)

—+...).
P o )

L(S’)A(m) =

PEODmon
irreducible

Further, since a(d,m) = 1 when d and m are coprime, this Euler product agrees
with the original L-function Euler product for all but finitely many places.

We will relate this modified L-function L(s, Xm) to L(S, Xm,) and derive a bound
on its degree as a polynomial in ¢, as long as m is not a perfect n**-power. These
properties are given in the following proposition:

Proposition 2.1. We have
L(s,Xm) = L(s, Xm, ) P(s;m),
where P(s;m) =[], Py(s;m) and Py(s;m) =
X (", p") :
o—momr)z W\ws e T E

no

a pnaJr'L pk ) ) '
Z ( e ) if p*|lmo and i # 0.
i bl
Here o and i are the unique integers with 0 < i < n and p"*T%||m. In particular,
for m not a perfect n®™™ power, the degree of L(s, Xm) as a polynomial in q~* is less
than the degree of m.

Proof. Begin with the Euler product

H Z Xmo m,p )

b k=0 \pl
Xmo na’pk:) na+z
-1 Y : [ 3 e
naHmk 0 ‘ | ® pwa+szk 0 |p|
0<i<n

For primes p with ¢ = 0—that is p { mo and p"||m, say— it follows from (1.2) that
the tails of the sum are a geometric series with common ratio Xy, (p)|p|”*. Thus
for such p the p-part is

noa—1 k ne ok —nas|, ((n—1)«a 1
3 XA L P () B,
P Ip| 1= X, ()|

na k
(2.7) Py(s;m) Z s P) (1= o () IpI ™) + ol ="
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For primes such that p?||mo with 0 < i < n, it follows from (1.2) that a(pm®*? p*) =
0 for k > na, so the p-part is a finite sum

o a(pmeti, pk)

PP(S;m): |ks

par Ip
Thus
L(s,Xm) = L(8, Xm, ) P(s;m)

as claimed. The bound on the degree of L(s, X.,) follows from the bound on the
degree of L(s, Xm,) for mg # 1 and the degrees of the P,(s;m). O

3. FuncTioNAL EQuATION: Hy — Ho

Recall that the generating series H1(X,Y) and H2(X,Y) of (1.9) define the p-
parts of Z; and Zs, respectively. We describe the functional equations relating
Hy(X,Y) and H2(X,Y). These will be used to prove the global functional equation
relating Z;1 to Zs.

The functional equations are a direct consequence of the following proposition:

Proposition 3.1. The generating series H1(X,Y) and Ho(X,Y') are rational func-
tions of X and Y. Explicitly,

1-XY
& BN = T - ey
and
(3.2)

n/2— 1X(n 1Yn nlglé Xp)X'L IYZ (i— 1)/2 - X
- 1o + 3 e pIO20 - x)

(1—X)(1 — [p|"*7 1Y) (1 — [p|" Xy m)

Hy(X,Y) =

Proof. Equation (3.1) is obvious from the definition (1.2) of the a(p*,p'). The eval-
uation of Hy(X,Y') is simply a matter of recognizing geometric series. From the
definitions of b(p?, p¥) in (1.3) and Hs in (1.9), we have

(o9}
1 :
ﬂﬂwmwwuanEQiﬁﬂww

= na/2—1 9(1’€,Xp"a) iy na
+ b (Ipl =)= XY
ey NG

+Z na/2 19 1 EaXP""‘)Xna lynoz

[
co n—1 1
+ Z Z ‘p|(n0‘+’ 1)/2 g( € XP"O‘+1)Xna+'L lynaJrz
a=0 i=1 \pfa+1|
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Evaluating the geometric series yields
(3.3)

1 o™ (o - XY
=X @ -0 - p"2xmym)

n/9— n—1 9(16 XP) (i— 1)/2xz 1Y’L
_|p| /2 1Xn—lyn N \/m |p|

L—|p["?Xryn = (1 |p[" XY )

(1~ [p"* Y™ Ho (X, Y) =

Equation (3.2) follows by rewriting equation (3.3). O
For 0 <i < n, define
Hi(X,Y36)= Y a(p’,p¥)X/VF,
k>0
k=i(n)
Ho(X,Y155) = (1— p[27ym = S pr, oy LX) oo oyt

4,k>0 A/ |p§|
k=i(n)

We have shown in Proposition 3.1 that H; and Hs are both rational functions in
Ip|”* and |p|” " and it is clear from this proposition that

(3.4)

< Yl—XY" — i=0
1— 1—-Y")(1—|p|”— Py =
(35) H, (X,Y;(Si) — {( )( (1)7(X)¢ZJ ) .

Toaya- ey (O
and

1—|p|"/2 -t x (- Dy" i=0

3.6 Ho(X. V-6 = 4 Co00= 2y /2xmym) - 0
( . ) 2( y 4y ’L) — 9(157\/7)'“’))(0 Dy ‘pl(l 1)/2(1 X)

Ip .
e R R e By

The following theorem establishes a functional equation relating Hy to Ho:
Theorem 3.2. We have the functional equation

o 1 1\p||p‘<155> Hg(p7(178)7p7(w+571/2);50) i=0
R0 =0 il e
)|p| Hy(p= (=) p=(wts=1/2):5,) 0 <i<n.

1 eT,X,,

Proof. The proof is by a direct computation using Equations (3.5) and (3.6). O

4. FUNCTIONAL EQUATION: Zy — Z5
There is a set of functional equations relating Z; and Z5. These will be described
in this section. Define
P(1—s;m)

(4.1) Q(s;m) = W

With the expansion of P as an Euler product, we see that () is also an Euler product
supported in the primes dividing m:

1 1
Qm = ]I et s 11 ez Fp = s,
pna+1||m pna+1.||m

=0 0<i<n
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Proposition 4.1. Define

Z g 1 € Xmo (SaXmo)Q(s;m>.

Z5(
S(s,w) BT
We have Z5 = Zs.
Proof. Define
—syTlgoo Qsip™)
(1-p7%) k=0~ pnkw i=0
4.2 H/ —F _w'éi = 7"3 i
e L L

Then Hj(p~*,p~") = S0 Hy(p~*,p~*; 8;) is the p-part of Z5. We will show that
H and Hs both satisfy the functional equations with H; shown in Theorem 3.2
and therefore H) = H,. The result follows since, for fixed m, the L-functions, P,
and @ each have Euler products.

As a result of the definition in equation (4.1), the p-parts of @) and P satisfy

P(S pna+z) _ pna(l/Qis)Q(l — S;p”o‘) 1=0
’ proti=D/2=9Q(1 — s;pnoti) 0 <i<n.

Therefore, we relate Hy to H) by

o 1% P(s;pnk
Hi(p™*,p"60) =(1— |p| ") 12;7712“,)
k=0

nk(1/2—s)

—) Q1 — s;p™)|p
iy
- ")
|p| Z | ‘nk(w-‘ré 1/2)

1—[p|"" I (p= (%) p—(wts—1/2)
=—————Hy(p Y ;00)-
L —1pl
This is exactly the functional equation satisfied by Hs in Theorem 3.2. A similar
computation shows that

s Ip| s=1/2p n—(1=s) - —1/2
Hi(p™®p"0) = ———|p p () pm e/,
! )= el )
for 0 < @ < n. Thus H5Y(X,Y;0;) = Hao(X,Y;6;) for all 0 < i < n and this
completes the proof. O

For 0 < i < n, define

Z1(s,w;6;) = Z L(S7X7|nT;L)|f(8;m)

MmEOmon
degm=i (mod n)

and

Z g(1ﬂ€>Xmo) L(&Xmo)Q(s;m)'

Za(s,w;6;) =
|| ml®

mMEOmon
degm=i (mod n)
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Theorem 4.2. We have the functional equation

q2‘S 11q‘Zz(1—sw+s ;60) fOT’iZO
g2 1q1/2~ sf%)z(lfs’ersf%;éi) for 0 <i<n.

Z1(s,w;d;) = {

Proof. This is a direct computation utilizing the functional equation (2.5) for
L(8, Xomo)- O

5. CONVOLUTIONS

We define a convolution operation x on rational functions in z and y with power
series expansions around the origin. For

A(z,y) = > a(j,k)a’y* and B(a,y) = Y b(j,k)aly",
7,k>0 7,k>0
define
(AxB)(x,y) = Y a(j, k)b(j, k)2’ y"

J;k=0
We can compute convolutions as the double integral

(5.1) (Ax B)(z,y <2m> //A - y)de”,

where each integral is a counterclockwise circuit of a small circle in the complex
plane. (The circle must be small enough that A(z,y) is holomorphic for x,y inside
the circle.) We will utilize the residue theorem to compute this contour integral.

6. EVALUATION OF Z; AND Z,

We will now prove Theorem 1.2. We first establish the identity (1.7); then (1.8)
will follow from the functional equation (1.1). It follows from Proposition 2.1 that

(6.1) Z Xy (d)a(d, m) =0
dEOWLOn
deg d=k

when degm < k unless m is a perfect n*® power. To prove (1.7) of Theorem 1.2,
we begin by writing

(6.2) Z1(s,w) = Zy(s,w) + Zg(w, s) — Zp(s,w)
where

Zisw)= Y e Y xl(daldm)

q]qus

k>3j>0 d,mEOmon
dcgm 7
deg d=k
and
Zb(s’ w) Z qk:qu:s Z Z Xmo )
k>0 mEOmon deomon

degm=j degd=k
First, note that

2. 2 xm(daldm)= >, > xa(m)a(m.d).

MEOmon d€EO0mon MEOmon A€EOmon
degm=j degd=k degm=j degd=k
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When m and d are coprime, the reciprocity law (1.1) guarantees that Xm, (d) =
Xdo (7). Otherwise, when m and d are not coprime, Ym, (d) # X4, (772) only when
there exists a prime p such that p|dy and p|lmo. In this case a(d,m) = 0. The
symmetry a(d, m) = a(m,d) is obvious. This establishes the validity of the decom-
position (6.2) of Z;.

Now the key observation is that because of equation (6.1), we have

Za(s’w): Z quqks Z Z

k>j>0 MEOmon d€O0mon
degm=j degd=k
mo=1

Zb(s7w) Z Skw ks Z Z

k?>0 q q meomon deomon
deg m=k degd=Fk
mo=1

and

that is, the inner sum vanishes unless m is a perfect n**-power. This leads us to

consider the series
D DD Dl
me(’) d607n0n |m| |d|

m0:1

which has an Euler product
p] nk
H > \pI”’“IW

7,k>0

H 1_‘p| s—nw
p 1_‘p| 8 1_|p|_nw)(1—|p|(n 1)—ns— nw)

_ ((s)¢(nw)¢(ns + nw — (n—1))

(6.3) N ¢(s + nw)
B 1— gl
(L=t (1 - gl (1 - gnonsTiw)
_ 1 —quy”
T (1—gqz)(1—qy™)(1 — g*a"y")
= Tu(,y),

w

with x = ¢ %,y =q~
It is clear that

(6.4) Zo(s,w) = (T, x Ko)(x,y)
where
K (z,y) = ;
S S G —
> oy
J=k20

Compute the convolution in (6.4) by means of the integral in equation (5.1) which
we can evaluate using the residue theorem. We find

1
(1 —gntlanyn)(1 —qx)’

(6.5) Zo(s,w) =
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. Then

We can compute Z, similarly: let Ky(z,y) = 7 =

Zb(S, U}) = (Ta * f(b)(x7 y)
(6.6) 1
1— qn+1xnyn .
Putting this all together,
1 + 1
(1 =g ttary™)(1—qz)  (1-q"ary")(1 - qy)
1
1— anrlxnyn
_l-gy+1—gr—(1-qy)(1—qx)
(1 —gtiany™) (1 — gx)(1 - qy)
_ 1 -’y
(1 —gtamym)(1 - qz)(1 - qy)
This establishes (1.7).
With the rational function for Z;(s,w), we can use the functional equations
relating 71 (s, w;d;) and Zs(s, w;d;) for 0 < i < n to evaluate Z5(s, w). Expanding
the geometric series %qy and collecting terms with the exponent on y congruent

i
to ¢ (mod n), we arrive at

Zi(s,w) =

(6.7)

1— qn+1

T sriggy =0
Z1(s,w;8;) = {(1 qz)(1 q”fi; )(1130)111 Flgnyn) 0
(I—qx)(1—qmy™)(1—qrTizry™) <t <n.

Using the functional equations relating Z1 (s, w,d;) and Za(1 — s,w + s — £,6;)

and remembering that ’L\/ﬁq)‘ =1, we see that

q25 111(;{5121(1—811)4-8 6) 1=0

Zo(s,w;0;) = e
2( ) {qQS 1g1/2- s%Zl(l—s,ersfé;é,;) 0<i<n.
With this in hand, Z5 is

(6.8)

Lo,

2

2s—1 25 1 1/2 S
q ( S w S — f ( S,w S

When simplified, equation (6.8) is the rational function for Z; given in Theorem
1.2.
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