MULTIPLE DIRICHLET SERIES OVER RATIONAL
FUNCTION FIELDS

GAUTAM CHINTA

ABSTRACT. We explicitly compute some double Dirichlet series con-
structed from n!” order Gauss sums over rational function fields. These
turn out to be rational functions in ¢~%* and ¢~ ®2, where ¢ is the size of
the constant field. Key use is made of the group of 6 functional equations
satisfied by these series.

1. INTRODUCTION

The purpose of this paper is to explicitly compute some examples of
Weyl group multiple Dirichlet series over the rational function field Fy(t). As
described in [2], these are Dirichlet series in r complex variables s1, sa, ..., s,
whose coefficients can be expressed in terms of n® order Gauss sums. The
general theory implies that over a function field, these multiple Dirichlet
series will be rational functions of ¢, ¢7*2,..., ¢ *". Except when n = 2,
no examples of these rational functions have been written down.

Using explicit knowledge of the functional equations, we will express the
As series as a rational function of ¢~ and ¢~*2. This is the main result of
this paper and is given in Theorem 4.2. The functional equations of mul-
tiple Dirichlet series arise from the functional equations of single variable
Gauss sum Dirichlet series of the type initially studied by Kubota [17] using
the theory of metaplectic Eisenstein series on the n-fold cover of GGLs. This
theory was further developed by Kazhdan and Patterson [16] who stud-
ied Eisenstein series on the n-fold cover of GL,. It is conjectured that the
Weyl group multiple Dirichlet series are related to Whittaker coefficients of
these metaplectic Eisenstein series. This conjecture and much supporting
evidence for it is given in [2,4]
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In [2] is described a heuristic method to associate to a positive integer n
and a root system ® of rank r, a multiple Dirichlet series Z in r complex
variables with coefficients given by n'* order Gauss sums. Moreover, Z is
expected to have an analytic continuation to C" and to satisfy a group of
functional equations isomorphic to W, the Weyl group of the root system.
Brubaker, Bump, and Friedberg [3] have given a precise definition of Z in the
stable case; by definition, this means n is sufficiently large for a fixed ®. In
3] the authors show that for such n, the Weyl group multiple Dirichlet series
admit meromorphic continuation and have the expected group of functional
equations.

The multiple Dirichlet series studied in this paper fall in the stable range.
Therefore, the general shape of the results of this paper is already a con-
sequence of the results of [2,3]. What is new in this paper is the precise
description of the functional equations and the explicitness of Theorem 4.2.
The explicit computations in the case of the rational function field are con-
siderably simpler than in the general case. This fact was exploited by J.
Hoffstein [15] in his investigations of the theta function 6, on the n-fold
cover of SLy. We will make use of his results on the Fourier expansions and
functional equation of the metaplectic Eisenstein series in this context.

There are two reasons for carrying out the rational function field compu-
tation in such detail. First, we believe that the computation of higher rank
multiple Dirichlet series can give new information on the Fourier coefficients
of theta function 6,,. The nature of the Fourier coefficients of 6,,(z) for n > 3
grows increasingly complicated as n increases. Patterson explictly computed
05(z) in [18,19] and formulated a conjecture about the Fourier coefficients of
64(z), see [12]. Despite partial results of Hoffstein [15] and Suzuki [21,22],
the conjecture remains unproven. For n = 6, some interesting structure
was also noticed by Wellhausen [23]. But for n = 5 and n > 7, there is at
present not even a conjectural understanding of the Fourier coefficients of
0,(2).

In our work, these mysterious coefficients arise after taking residues in
multiple Dirichlet series. Since the multiple Dirichlet series we compute are
explicitly given rational functions, one can hope to directly take residues and
try to identify the resulting object in terms of known objects. Though the
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main focus of this paper are the multiple Dirichlet series associated to the
root system As, we do also give examples in Section 5 of the cubic (n = 3)
Aj series. Taking residues of the cubic Aj series gives the rational function
field analogue of a recent result of Brubaker and Bump [1]. They show that
the cubic double Dirichlet series of Friedberg, Hoffstein and Lieman [14] are
residues of the cubic A3 Weyl group multiple Dirichlet series. They interpret
their result in terms of the Bump-Hoffstein conjecture [5] and make further
conjectures on how the series of Friedberg, Hoffstein and Lieman arise as
multiresidues of higher rank multiple Dirichlet series. Unfortunately, their
method of proof relies heavily on Patterson’s explicit computation of 63 and
therefore will not readily generalize to higher n. The methods developed
in this paper, however, do generalize and hopefully can be used to address
these questions.

The second motivation for carrying out these explicit computations is in
order to gain insight into the problem of constructing unstable Weyl group
multiple Dirichlet series. In the unstable case, that is, when n is small
relative to @, a complete description of the coefficients of the Weyl group
multiple Dirichlet series does not yet exist except in the case n = 2, which
was treated in Chinta and Gunnells [8]. Important partial progress including
a beautiful conjecture for multiple Dirichlet series associated to root systems
of type A, is given in Brubaker, Bump, Friedberg and Hoffstein [4]. The
conjecture describes the p-parts of the multiple Dirichlet series in terms
of Gelfand-Tsetlin patterns. This Gelfand-Tsetlin conjecture is verified to
give the correct coefficients in the stable range and also to give the correct
coefficients when n = 2 for A,,r < 5, which were first computed by the
author in [6].

The relevance of the present paper to the description of the unstable co-
efficients is given by the striking resemblance between the rational function
field multiple Dirichlet series and the p-part of that series, cf. (3.3) and
(4.8). More striking is the resemblance in the Ajs series between the 24
terms of Table 1 of [1] and (5.3). This resemblance was previously noted by
the author in the quadratic case (n = 2), in which case it can be shown that
both the p-part and the multiple Dirichlet series are uniquely characterized
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by the functional equations they satisfy. To see this worked out in detail
for A,, we refer the reader to Section 5 of [7].

It is very likely that a similar phenomenon accounts for the resemblance
for arbitrary n. Regardless, it suggests a promising approach to the prob-
lem of defining unstable Weyl group multiple Dirichlet series—namely, to
generalize to arbitrary n, the invariant function methods used in [6, 8, 10]
to treat the quadratic case. A first step, using a group action motivated
by the functional equation (4.4), has been carried out in a joint work with
Gunnells, [9].

This work was supported by NSF Grant FRG DMS-0652605 and by the
Alexander von Humboldt Foundation. The author warmly thanks Joel
Mohler for very careful readings of drafts of this article and Prof. S. J.
Patterson for several illuminating discussions. The author is also grateful
to the Hausdorff Research Institute of Mathematics for their hospitality
during the completion of this work.

2. PRELIMINARIES

We review some concepts and notation from Patterson, [20]. Let n be an
integer > 2 and g a power of an odd prime p. We assume that ¢ is congruent
to 1 mod n. For convenience, we also assume that ¢ is congruent to 1 mod
4.

Let pp, = {a € Fy : a” = 1} and let x : F — p, be the character
a — a’ . Let K be the rational function field [F,(t) with polynomial ring
O = F,[t]. We let K, = F,((t)) denote the field of Laurent series in ¢!
Also, let O,,,,, denote the set of monic polynomials in O.

For x,y € O relatively prime, <§> denotes the n'* order power residue

symbol. We have the reciprocity law

Z Y
2.1 ) = (—)
e (5)-C
for z,y monic. (Here we make use of the fact that ¢ is congruent to 1 mod
4.)
We next define an additive character on K. First let e be a nontriv-

ial additive character on IF,. Use this to define a character e, of F, by
e.(a) = eo(Trp,/r,a). Let w be the global differential dz/2?. Finally define
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the character e of K, by e(y) = ex(Resy(wy)) for y € K. Note that
{ye K :elyO =1} =0.

Fix an embedding ¢ from the the n'™ roots of unity of F, to C*. For
r,c € O we define the Gauss sum

= & ((2)e(2)

y mod c
The main subject of this paper is Dirichlet series and multiple Dirichlet
series constructed from such Gauss sums. It will be necessary for us to
consider sums over certain ideal classes in O. To this end, for z,y € K., we
write x ~ y if x/y € KZ".

Define the Dirichlet series

Yrems) =1 —q¢"")" Y glree)d™

CGOmon
c~n

where the sum is over all nonzero monic polynomials ¢ ~ 7 and |c| is g4°&¢,
The 1 we will use are of the form 7, 0 < i < n. We will henceforth suppress
the embedding € from the notation, and identify the value of a power residue
symbol with its image in C under e. Thus ¢(r, 7", s) = ¥(r,e, 7", s) and

g(r,c) = g(r,e,c). We also allow linear combinations of the 7’ ’s. So, for

example, letting T= 3" 7, we have

¢(T7 H?‘S) = Z’@Z}(T» W;oias) = Z g(?“, C)|C|_S.
1=0

c€O0mon
We now describe the functional equation which the Gauss sum Dirichlet
series ¥(r, ', s) satisfies. Let 7, j be integers mod n and r monic of degree
d =nk + j,n > 0. Define
()= P L 0-G-2y =1
RJ(‘S) - Pz,degr(s) =—q ! 1 — qn+1q—ns

and

—ns

i—j— —s)(1-n 1 _qnq
Qi () = Quagr () = (g0 ) ==L

Here, (8), = 8 —n|B/n] and 7(¢’) is the Gauss sum
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Then it is proven in [15, Proposition 2.1] that 1 satisfies the functional

equation

(2.2) »(r,7ml,5) =
|r|1_SPi7degT’(3>¢< T, 001’2 )+ |r|1_SQi,deg7’(s)w(r> ﬂ-éodegr ! 2 )

(See also [20, Eq. 2.2].) Summing both sides over i, we can also write this
as

(2.3) W(r 1, s) = |r|*~ SZTMW ro, 2 — s)

where, if 20 —j — 1 # 0 (mod n),
(1-s)(1—n)
T q

509 = e [0 = 1) (@D - 0]

and if 20 — j — 1 =0 (mod n),
Ty (s) = 00

We observe that for fixed s, each of the functions P;;, Q;;, T;; depends only
on 2¢ — j. This fact will be needed later.

The general theory [15,16] tells us that (1 —¢™ ")y (r, 77, 5) is a poly-
nomial in ¢~°. The functional equation then allows us to give a bound on
the degree of this polynomial, see e.g. [15, Prop. 2.1] or [20]. As a simple

consequence we have

Proposition 2.1. The Gauss sum Dirichlet series associated to the constant
polynomial is

14 q7(e)
1 — qn+1—ns'

P(1,1,s) =

The main subject of the papers of Hoffstein [15] and Patterson [20] are
the residues of the Gauss sum Dirichlet series 1(r, I, s) at s = 1+1/n. These
residues are related to the Fourier coefficients of the theta function on the
n-fold metaplectic cover of GLy(K). Following [20] we define

pn(r) = lim1 (1 —¢" ™) (r, Ls).

s—»l—}—ﬁ

In Section 5 we indicate how the theory of multiple Dirichlet series can be

used to deduce information on the coefficients p(r).
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3. THE A MULTIPLE DIRICHLET SERIES

In this section we define and describe the functional equations of a dou-
ble Dirichlet series constructed from n'" order Gauss sums. This series is

heuristically of the form

-1
g(1,€,¢1)g9(1,¢€,¢o) (2—;)
ZZ |Cl|s1lc2|52 ’

C1 Cc2

where the sum is over all ¢q, ¢c; nonzero monic polynomials.

More precisely, we define

(3.1) Z(s1,82;m1,7m2) =
1 — g st -1 1 — g2 -1 1 — 2n—nsy— n82 Cla 02
(=g ™) A =g"") (1 ~q YN Tl

51 |C2|S2
c1~M1 C2~m2

where the coefficient H(cq, ¢2) is defined by the following two conditions:

(1) If ged(cyico, didy) = 1 then

i () () ()¢

(2) If p is prime, then

> HE Py = 1+ g(1,p)e + g(1,p)y + 9(1,p)g(p, p*)y’
k, >0

+9(1,p)g(p, p*)x%y + g(1,p)*g(p, p*)2*y>.

It can be seen that summing (3.1) over one of the indices, say c¢;, with

the other index fixed will produce a Dirichlet series

(3.4) E(cy,m,51) = (L=¢" ™)™ > H(er,e0)er| ™

c1€0mon
c1~n

which is closely related to a Gauss sum Dirichlet series. This will have a
functional equation as s; — 2 — sy, which will in turn induce a functional
equation in the double Dirichlet series Z. The rest of this section is devoted

to verifying this assertion and describing the precise functional equation of
Z.
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Let a be a function defined on F[t]. We say that a is twisted multiplicative
if a(zy) = a(x)a(y) <§> (%) whenever z and y are relatively prime. The first
Lemma below is a standard property of Gauss sums.

Lemma 3.1. Let r be a monic polynomial in F,[t]. The map
x— g(r,z)
18 twisted multiplicative.
Lemma 3.2. Fiz a cubefree monic polynomial c. Write ¢ = ¢,c3 where ¢
1s monic and squarefree. The map

H(zcy, )

e H(eg,0)

15 twisted multiplicative.

Proof of Lemma 3.2. First note that ¢y is the minimal monic polynomial
such that H(co,c) # 0, i.e., if H(d,c) # 0 then cy|d. To prove the Lemma,
take relatively prime monic polynomials z and y. We need to show

5 H{zyen.c) — H(zca, ¢)H (yca, c) (E) <£>

H(eg, ) y) \x
Write
Co = cgl)cg), c=cMe? | with (:vcél)c(l), ych)c(Q)) =1
and compute both sides of (3.5) using (3.2). O

We can now express E(c,n,s) in terms of a Gauss sum Dirichlet series.

Lemma 3.3. Let ¢ be a cubefree monic polynomial and write ¢ = cic3 as

above. Then
H(ey, )

|cal®

E(e, L s) = U(ey, L s).
Proof. Having already established the twisted multiplicativity of the coeffi-

cients

H(cox, 0)
H(eg,0)

T =

it remains only to verify that
H(Cg Pl, C)

(3.6) H{cr. o)

= g(clapl>
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for all irreducible polynomials P and integers [ > 0. Note that
c A\ [\ "

61 e - e (2) (£) (2)
(653 C1 C1

To go further, we break the argument into three cases, depending on whether
(P,c) = 1, P||ey or Pl|ecy. Since the equality is trivially satisfied for [ = 0,
we will assume that [ > 0.

If (P,c¢) =1 the numerator of the left hand side of (3.6) is

H(cy, ¢)H(P', 1) (%) (g) (’%l) o

This is nonzero only when [ = 1, in which we get
H(02P7 C) = H(627 C)g<cl7 P)

as desired.

If P|c; we compute

(3.8) H(P"-cy,c;-c3)

- e () (2)(2) (2) (5) " (2)

Since P||¢y this expression is nonzero only when [ = 2. Write ¢; = P¢é;. Thus
H(1l,¢1) = H(1,¢1)H(1, P) (g) (%) . Using this and again the definition
(3.2),(3.3) of H, we find

H(P*¢) = H(P’,P)H(1,P) 'H(1,c1) (]?—2>_1

&1

&

(3.9) = g(cr, PP)H(1,¢c1).

P PYH(LG) (P)

Combining (3.8) and (3.7) with (3.9) we conclude that

H(coP? )

_ 2
H(CQ,C) —g(Cl,p )7

as was to be shown.

The proof of the third case (when P|cs) is similar and will be omitted. [
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Lemma 3.4. Let ¢ be a monic polynomz'al Then

E(c,1,s) = |e|'” SZTzdegc e, 2—s).

Equivalently,
E(e,nl, s) =
e (Praege(8) E(e, 2 = 8) + Qideae(s) E(c, 745712 — 5)) .
The functions Pi;, Qi;,Ti; are as defined at the end of Section 2.

Proof. We may assume c is cubefree, as otherwise D(c, s) = 0. Write ¢ = ¢;¢3
with ¢; monic and squarefree. By the previous Lemma,

H
E(c,1,s) = (02’C>¢(cl,]1,s).
|cal®
Let degcx = jr(n), 0 < ji <n for k= 1,2. Thus
H
E(c,1,s) = (6276)1/1(01,11, s)
|ca®
n—1 :
s Cl, Mo, 2— 8
= )3 el T ) T2
n—1
—s ¢(0177Too:2 - S)
— H(CQ,C)Z |C|1 iz—‘ljl( ) |02|2 s
i=0

= |1 SZTZM T~ j272_5)

= |C|1_Szﬂ—j2,j1 (5) G, 0—0172 )
i=0
The proof is completed by noting that T;_j, ;,(s) = T} j,+2,(S) = T; degc(5)-
U

From Lemma 3.4 follow immediately the functional equations of Z (s, s2).

Theorem 3.5. Let 0 < 7,57 < n. The collection of double Dirichlet series

Z(s1, 89; 7, w0 satisfy the functional equations

(310) Z(Sl, S9, T 7T_j) = IDZ]<81)Z(2 — 51,951 + 89 — 1; 7T_i ’/T_j)

o0 oo y oo oo

+ Qij(51)Z(2 — 51,81 + 82 — Ly )1 J)
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and

(3.11) Z(s1, 89,7, 7)) = Pyi(s9)Z(s1 + 52 — 1,2 — so; w0, m20)

[e.e] oo ? o

+ Qils2)Z (51 + 52 — 1,2 — sy, mod ).

Remark. Let G be the symmetric group on three letter with generating
reflections o1, 05. Let V' be the set of double Dirichlet series with meromor-
phic continuation to C2. For f(sy, s2) = f(s1,82;1,1) in V, define

n

(Flon)(s1,52) = > (Py(s1)f(2 = s1,81 + 85 — Ly, mod)

ij=0
+ Qij(s1)f(2 = s1,81 + 82 — Ly )7 7w 7))

and

n

(floa)(s1, 82) = Z (Pji(s2) f(s14 52— 1,2 = sp3 w2, wo))

i,7=0
FQuls2) o1+ 52— 1,2 - sy b 40)

It turns out that these two transformations generate an action of G on V.
The functional equations of the previous theorem assert the invariance of

Z(s1, s2) under this group action.

4. DETERMINATION OF THE A MULTIPLE DIRICHLET SERIES

In this section we will explicitly write down the double Dirichlet series
of the previous section as rational functions in ¢~*', ¢ 2. We will find it
convenient to introduce the variables x = ¢~°*,y = ¢~*2. We write

4.1 7 — 1—(=2i+j+1)n q

(4.1) Pii(z) (gx) TR i
i . 1— ¢z

(42) QU(:C) = _T(EQ ! 1)((]1’)1 1— qn-i-lxn?

1_qn+lxn

(4.3) 0 L Bt s L S A0 ST SV SR R
' (gz)'~" otherwise
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We also introduce

womd)and Z(zy, L) = Y Z(x,y34,5).

0<i,j<n

Z(xayalaj) - Z(Slvs%ﬂ—

When we wish to make the notation reflect the dependence on n, we shall
write Z™ (2, y;1, 7).
Then the functional equation (3.10) takes the form

(4.4)

Summing over 7, 7 between 0 and n — 1 we can also write this as

(4.5) Z(r,y L) =) > Ty Z(h, qry; i ).

Because of the reciprocity law we have as well the relation
(4.6) Z(x,y; LI) = Z(y, z; LI).

Knowledge of these functional equations allows the explicit computation
of Z(z,y;I,1). Let D(z,y) = (1—¢" ™' 2™)(1—¢" y")(1—¢* 1 a"y™) and set
N(z,y) = D(z,y)Z(x,y; L, I). The following proposition shows that D(x,y)

is the denominator of Z and gives a bound on the degree of the numerator.

Proposition 4.1. The function N(z,y) is a polynomial of x,y of degree
bounded by 2 in both variables.

Proof. The fact that the product N(z,y) = (1 — ¢""a™)(1 — ¢"y")(1 —
"y Z(x,y; 1, 1) is entire is identical to the proof of Theorem 2 in [2].
To show that N(z,y) is a polynomial and bound the degrees, we argue as
in the proof of Theorem 4.1 of Fisher-Friedberg [13]. Let Z(z, y) denote the
column vector consisting of all the Z(z,y;4,j), with 0 < 4,j < n (with the
pairs (4, j) in some fixed order). In matrix notation the functional equation

(4.4) can be expressed as

Z(z,y) = A(2) 2( 2. qzy)
where A(z) is an n? x n? matrix whose coefficients are the functions P;;(z)

and Q;;(z). From (4.1) we have A(z) << z'™", that is, every entry of the
matrix A(x) satisfies this bound as # — oo. Similarly,(4.6) implies

Z(z,y) = BZ(y, )
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where B is the identity matrix. (We write it like this because it helps us keep
track of an application of the functional equation.) Repeatedly applying the
two functional equations, we get

Z(z,y) = A(x)BA(qzy)BA(y)BZ(45, 2-).

?y

Multiply both sides by D(x, y)D(qQ%, L)

7y

(4.7)  D(Z; 7;)N(x,y) = D(x,y)A(z) BA(qzy) BA(y) BN (37, ;)

Ty Ty

where N(z,y) is the vector with components D(z,y)Z(z,y:i, 7). To show
that N(x,y) is a polynomial of the stated degree, it suffices to show that
that each entry of N(z,y) is O(|zy[?). Let 2,y — oo in (4.7). The terms
D(1/(¢%x),1/(¢%y)) and N(1/(¢*x),1/(¢q%y)) remain bounded, while

D(x,y) = O(Jzy|™) and  A(z)A(y)A(zy) = O(lzy[*™").

Therefore the right hand side is O(z%y?). This establishes that N(z,y) is a
polynomial in z and y of degree at most 2 in both x and y. U

We now present our main result.

Theorem 4.2. For n > 2 we have
(4.8)
Z(n) (Q?, y; ]I, ]I) _ 14+ mngx+11g Y+ 7'1T2q3 x2 y+ 7—17-2(]313y2 + 7-127-2q4 2 y2

(1 —gmtam) (1 — gmiym)(1 — g*rFlany)

where T; = 7(€).
Remark 4.3. The case n = 2 is dealt with in Fisher-Friedberg [13] and
Chinta-Friedberg-Hoffstein [7], where it is shown that
14 @320 + @2y — 222y — ¢*2ay? — B2 42
(1= ¢**)(1 = ¢*y?)(1 — a?y?) '

The method of proof below will work in this case as well, but a slight

Z3 (2, y; LT) =

adjustment needs to be made to deal with a degenerate Gauss sum.

Proof of Theorem 4.2. We first show that Z(x,y;1,1) = 0. Withi = j = 1,
the functional equation (4.4) implies that

Z(x,y:1,1) = [Pu(2z) + Qu(z)] 2(z;. qzy; 1, 1).
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Multplying through by D(z,y), we get

1_n+1n 1
q ch(

——,qry;1,1).
1_qn71xn q2£C qry )

N(z,y;1,1) = —x

But because of Proposition 4.1 we know that N(z,y;1,1) is a constant
multiple of the monomial xy. It follows that N(z,y;1,1) = 0.

Furthermore, setting x = 0 and y = 0 and using Proposition 2.1, we

deduce that N(z,y) is of the form
N(z,y) = 1+ q7r(e)x + qr(e)y + ax’y + azy® + B’y

for some constants «, (3. To determine these constants, we again use the

functional equations. For example,

We solve for a and find a = ¢*>7(e)7(€?). Similarly applying the functional
equation to Z(z,y;2,2) we find 3 = 7275¢*. This completes the proof of the
theorem. |

5. EXAMPLES

In this section we compute some examples of residues of multiple Dirichlet
series and deduce information on the residues p,, of the Gauss sum Dirichlet
series. By Lemma 3.3, we have

. _ H(ca, c163)pnlcr)
51 1 1 — n+1l—nsq Z ’ ]I H — ) 2/Fn )
I AP SR o ECEE

ClchEOmon
(61762):1
squarefree

When n = 3, we have
1+ g7 + g1y + ¢'2°y + ¢'ey® + ¢y
(1= q*2%)(1 — ¢*y®)(1 — q"2%y?)

where 7 = 7(¢). Note that this series has a simple pole at sy = 4/3. The

Z(z,y; LT) =

residue of Z at the simple pole s; = 4/3 is a constant multiple of

1+7q7 '3
(1—¢*y)(1 — ¢®y3)

= (const)((se — 1/3)((3s9 — 2).
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Comparison of this Dirichlet series with (5.1) suggests that, for a squarefree

monic polynomial ¢,

palc) = (const)g(T, || 22,
This agrees with [18], [19], in which Patterson determines the Fourier coef-
ficients of the cubic theta function.

Our second example involves the A3 series constructed from cubic Gauss
sums. We will not provide complete details here as we plan to return to the
topic more systematically in a later work. Let

@(81, Sa2, 33) = (1 _ qN—n51)—1(1 _ qn—nSQ)—l(l _ q2n—n51—n52)_1

(1 o qn—n53)—1(1 o q2n—n52—n83)—1(1 _ q3n—ns1—n82—n53)—1.

The Ajz series is defined by

H(Cl Co 03)
5.2 Z(s1, 52,53) = ®(s1, 52,5 Z N
( ) (17 2, 3) ( 15225 3) |Cl|51|02|52|c3|83
c1,2,c3EO0mon

where the coefficient H(cq, 2, c3) satisfies the twisted multiplicativity Eq.

(16) of [1] and is defined in Table 1 of [1] for prime power arguments
When n = 3, a lengthy computation similar to that given in the proof of

Theorem 4.2 shows that Z(si, sa, s3) is a rational function in z = ¢!,y =

q~ %2,z = ¢ *® with denominator
(1—q'2®)(1 - ¢"") (1 — ¢*2°)(1 = ¢"2%y*) (1 = ¢"y*2°) (1 — "2y 2%)

and numerator the sum of 24 terms

(5.3) 1+ qra +qry + q72z + ¢* 2%y + ¢*vy® + ¢*yP2 + ¢y’ + Praty?
F Pyt + @l — 2P — Prayt S — Praty?e? — Prady? S
— PratPr — Py — Bty — ¢ 2atytsd — ¢ 2yt e? — rtayts
+ Pratys? — g O7ayt? — gBradytl.
We now show that residues of this series give the the rational function
field analogues of the two multiple Dirichlet series considered by Friedberg-

Hoffstein-Lieman [14]. These analogues have been defined and computed
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by Chinta and Mohler, [11]. They are given by

(54) ZFHLJ(S,@U) =
C—l) a(ey, o)

1—3w\—1 3—3s—3w\—1 <C2
_ 1—gq NEs
) ( ) Z ‘Cl|s|02|w

(1-¢") " (1—¢
Cl:CZGOmon

— 1 — n/2—ns\—1 g<627 cl) .
( q ) Z ‘Cl|s+1/2|02|w

¢1,2€O0mon

and

(55) ZFHL,Q(S,’LU)

Here a(g, f) is a multiplicative weighting factor defined on prime powers by
Z a(p* o)ty = 1+ o +y+ a2 +y? — 2y — x® — o2a® — 2P — 2B
k>0

(The shift by 1/2 in the s variable in Zpyy, o occurs because the Gauss sums

of [14] are normalized to have modulus 1. Also we have reversed the s and

w.)
It is shown in [11] that

2—s—w

l—gq
ZFHL,l(S7w) = (1 — ql_s)(l _ ql—w)(l _ q4—33—3w)

and
ZFHL,Q(Syw) =
14+ q1/273,7_ + q3/2737w7_ + q27237277_ _ q372572w7: _ q9/273372w
(]_ _ ql—w)(]_ _ q5/2—38)(1 _ q9/2—38—3w)

On the other hand,

(5.6)  lim (1 —¢*33)Z(s1, 59, 53) =
s3—4/3

(1= ¢*3y)(1 — ¢*2®)(1 — ¢"2%y%)(1 — ¢*y*) (1 — ¢Sa®y?)

Hence

Res Z(s1,$2,83) =
s3=4/3
(const)((3se — 2)((3s1 + 382 — 5) Zpura(st — 1/2,s0 — 1/3).

Similarly,
Res Z(s1, S2,53) = (const)((3s1 — 2)((3s3 —2) Zppri(s1 —1/3,s3 —1/3)

so=4/3
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This identity of the residues of the cubic A3 multiple Dirichlet series with
the series studied in [14] was first established by Brubaker and Bump, [1].
(Actually, Brubaker and Bump work over the number field Q(1/—3) but, up
to a finite number of bad primes, their methods will work over any global
field containing a cube root of unity.)

Guided by the Bump-Hoffstein conjecture [5], Brubaker and Bump further
suggest that n—2-fold residues of the n* order Weyl group multiple Dirichlet
series associated to the root system A, should coincide with the n'* order
double Dirichlet series of Friedberg-Hoffstein-Lieman. We hope that explicit
computations over the rational function field such as those described above

will give more evidence for this expectation.
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