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Abstract. We explicitly compute some double Dirichlet series con-
structed from nth order Gauss sums over rational function fields. These
turn out to be rational functions in q−s1 and q−s2 , where q is the size of
the constant field. Key use is made of the group of 6 functional equations
satisfied by these series.

1. Introduction

The purpose of this paper is to explicitly compute some examples of

Weyl group multiple Dirichlet series over the rational function field Fq(t). As

described in [2], these are Dirichlet series in r complex variables s1, s2, . . . , sr

whose coefficients can be expressed in terms of nth order Gauss sums. The

general theory implies that over a function field, these multiple Dirichlet

series will be rational functions of q−s1 , q−s2 , . . . , q−sr . Except when n = 2,

no examples of these rational functions have been written down.

Using explicit knowledge of the functional equations, we will express the

A2 series as a rational function of q−s1 and q−s2 . This is the main result of

this paper and is given in Theorem 4.2. The functional equations of mul-

tiple Dirichlet series arise from the functional equations of single variable

Gauss sum Dirichlet series of the type initially studied by Kubota [17] using

the theory of metaplectic Eisenstein series on the n-fold cover of GL2. This

theory was further developed by Kazhdan and Patterson [16] who stud-

ied Eisenstein series on the n-fold cover of GLr. It is conjectured that the

Weyl group multiple Dirichlet series are related to Whittaker coefficients of

these metaplectic Eisenstein series. This conjecture and much supporting

evidence for it is given in [2, 4]
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In [2] is described a heuristic method to associate to a positive integer n

and a root system Φ of rank r, a multiple Dirichlet series Z in r complex

variables with coefficients given by nth order Gauss sums. Moreover, Z is

expected to have an analytic continuation to Cr and to satisfy a group of

functional equations isomorphic to W , the Weyl group of the root system.

Brubaker, Bump, and Friedberg [3] have given a precise definition of Z in the

stable case; by definition, this means n is sufficiently large for a fixed Φ. In

[3] the authors show that for such n, the Weyl group multiple Dirichlet series

admit meromorphic continuation and have the expected group of functional

equations.

The multiple Dirichlet series studied in this paper fall in the stable range.

Therefore, the general shape of the results of this paper is already a con-

sequence of the results of [2, 3]. What is new in this paper is the precise

description of the functional equations and the explicitness of Theorem 4.2.

The explicit computations in the case of the rational function field are con-

siderably simpler than in the general case. This fact was exploited by J.

Hoffstein [15] in his investigations of the theta function θn on the n-fold

cover of SL2. We will make use of his results on the Fourier expansions and

functional equation of the metaplectic Eisenstein series in this context.

There are two reasons for carrying out the rational function field compu-

tation in such detail. First, we believe that the computation of higher rank

multiple Dirichlet series can give new information on the Fourier coefficients

of theta function θn. The nature of the Fourier coefficients of θn(z) for n ≥ 3

grows increasingly complicated as n increases. Patterson explictly computed

θ3(z) in [18,19] and formulated a conjecture about the Fourier coefficients of

θ4(z), see [12]. Despite partial results of Hoffstein [15] and Suzuki [21, 22],

the conjecture remains unproven. For n = 6, some interesting structure

was also noticed by Wellhausen [23]. But for n = 5 and n ≥ 7, there is at

present not even a conjectural understanding of the Fourier coefficients of

θn(z).

In our work, these mysterious coefficients arise after taking residues in

multiple Dirichlet series. Since the multiple Dirichlet series we compute are

explicitly given rational functions, one can hope to directly take residues and

try to identify the resulting object in terms of known objects. Though the
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main focus of this paper are the multiple Dirichlet series associated to the

root system A2, we do also give examples in Section 5 of the cubic (n = 3)

A3 series. Taking residues of the cubic A3 series gives the rational function

field analogue of a recent result of Brubaker and Bump [1]. They show that

the cubic double Dirichlet series of Friedberg, Hoffstein and Lieman [14] are

residues of the cubic A3 Weyl group multiple Dirichlet series. They interpret

their result in terms of the Bump-Hoffstein conjecture [5] and make further

conjectures on how the series of Friedberg, Hoffstein and Lieman arise as

multiresidues of higher rank multiple Dirichlet series. Unfortunately, their

method of proof relies heavily on Patterson’s explicit computation of θ3 and

therefore will not readily generalize to higher n. The methods developed

in this paper, however, do generalize and hopefully can be used to address

these questions.

The second motivation for carrying out these explicit computations is in

order to gain insight into the problem of constructing unstable Weyl group

multiple Dirichlet series. In the unstable case, that is, when n is small

relative to Φ, a complete description of the coefficients of the Weyl group

multiple Dirichlet series does not yet exist except in the case n = 2, which

was treated in Chinta and Gunnells [8]. Important partial progress including

a beautiful conjecture for multiple Dirichlet series associated to root systems

of type Ar is given in Brubaker, Bump, Friedberg and Hoffstein [4]. The

conjecture describes the p-parts of the multiple Dirichlet series in terms

of Gelfand-Tsetlin patterns. This Gelfand-Tsetlin conjecture is verified to

give the correct coefficients in the stable range and also to give the correct

coefficients when n = 2 for Ar, r ≤ 5, which were first computed by the

author in [6].

The relevance of the present paper to the description of the unstable co-

efficients is given by the striking resemblance between the rational function

field multiple Dirichlet series and the p-part of that series, cf. (3.3) and

(4.8). More striking is the resemblance in the A3 series between the 24

terms of Table 1 of [1] and (5.3). This resemblance was previously noted by

the author in the quadratic case (n = 2), in which case it can be shown that

both the p-part and the multiple Dirichlet series are uniquely characterized
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by the functional equations they satisfy. To see this worked out in detail

for A2, we refer the reader to Section 5 of [7].

It is very likely that a similar phenomenon accounts for the resemblance

for arbitrary n. Regardless, it suggests a promising approach to the prob-

lem of defining unstable Weyl group multiple Dirichlet series–namely, to

generalize to arbitrary n, the invariant function methods used in [6, 8, 10]

to treat the quadratic case. A first step, using a group action motivated

by the functional equation (4.4), has been carried out in a joint work with

Gunnells, [9].

This work was supported by NSF Grant FRG DMS-0652605 and by the

Alexander von Humboldt Foundation. The author warmly thanks Joel

Mohler for very careful readings of drafts of this article and Prof. S. J.

Patterson for several illuminating discussions. The author is also grateful

to the Hausdorff Research Institute of Mathematics for their hospitality

during the completion of this work.

2. Preliminaries

We review some concepts and notation from Patterson, [20]. Let n be an

integer ≥ 2 and q a power of an odd prime p. We assume that q is congruent

to 1 mod n. For convenience, we also assume that q is congruent to 1 mod

4.

Let µn = {a ∈ Fq : an = 1} and let χ : F×q → µn be the character

a 7→ a
q−1

n . Let K be the rational function field Fq(t) with polynomial ring

O = Fq[t]. We let K∞ = Fq((t)) denote the field of Laurent series in t−1.

Also, let Omon denote the set of monic polynomials in O.
For x, y ∈ O relatively prime,

(
x
y

)
denotes the nth order power residue

symbol. We have the reciprocity law

(2.1)

(
x

y

)
=
(y
x

)
for x, y monic. (Here we make use of the fact that q is congruent to 1 mod

4.)

We next define an additive character on K∞. First let e0 be a nontriv-

ial additive character on Fp. Use this to define a character e? of Fq by

e?(a) = e0(TrFq/Fpa). Let ω be the global differential dx/x2. Finally define
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the character e of K∞ by e(y) = e?(Res∞(ωy)) for y ∈ K∞. Note that

{y ∈ K : e|yO = 1} = O.

Fix an embedding ε from the the nth roots of unity of Fq to C×. For

r, c ∈ O we define the Gauss sum

g(r, ε, c) =
∑

y mod c

ε
((y

c

))
e
(ry
c

)
.

The main subject of this paper is Dirichlet series and multiple Dirichlet

series constructed from such Gauss sums. It will be necessary for us to

consider sums over certain ideal classes in O. To this end, for x, y ∈ K∞ we

write x ∼ y if x/y ∈ K×n∞ .

Define the Dirichlet series

ψ(r, ε, η, s) = (1− qn−ns)−1
∑

c∈Omon
c∼η

g(r, ε, c)|c|−s

where the sum is over all nonzero monic polynomials c ∼ η and |c| is qdeg c.

The η we will use are of the form π−i∞ , 0 ≤ i < n. We will henceforth suppress

the embedding ε from the notation, and identify the value of a power residue

symbol with its image in C under ε. Thus ψ(r, π−i∞ , s) = ψ(r, ε, π−i∞ , s) and

g(r, c) = g(r, ε, c). We also allow linear combinations of the πi∞’s. So, for

example, letting I =
∑n−1

i=0 π
−i
∞ , we have

ψ(r, I, s) =
n−1∑
i=0

ψ(r, π−i∞ , s) =
∑

c∈Omon

g(r, c)|c|−s.

We now describe the functional equation which the Gauss sum Dirichlet

series ψ(r, π−i∞ , s) satisfies. Let i, j be integers mod n and r monic of degree

d = nk + j, n ≥ 0. Define

Pij(s) = Pi,deg r(s) = −q(1−s)(1−(j+1−2i)n) q − 1

1− qn+1q−ns

and

Qij(s) = Qi,deg r(s) = −τ(ε2i−j−1)q(1−s)(1−n) 1− qnq−ns

1− qn+1q−ns
.

Here, (β)n = β − nbβ/nc and τ(εj) is the Gauss sum

τ(εj) =
∑
a∈F×q

εj(χ(a))e?(a).



6 GAUTAM CHINTA

Then it is proven in [15, Proposition 2.1] that ψ satisfies the functional

equation

(2.2) ψ(r, π−i∞ , s) =

|r|1−sPi,deg r(s)ψ(r, π−i∞ , 2− s) + |r|1−sQi,deg r(s)ψ(r, πi−deg r−1
∞ , 2− s).

(See also [20, Eq. 2.2].) Summing both sides over i, we can also write this

as

(2.3) ψ(r, I, s) = |r|1−s
n−1∑
i=0

Ti,deg r(s)ψ(r, π−i∞ , 2− s)

where, if 2i− j − 1 6≡ 0 (mod n),

Tij(s) = − q(1−s)(1−n)

1− qn+1−ns

[
q(1−s)(2i−j−1)n(q − 1) + τ(ε2i−j−1)(1− qn(1−s))

]
and if 2i− j − 1 ≡ 0 (mod n),

Tij(s) = q(1−n)(1−s).

We observe that for fixed s, each of the functions Pij, Qij, Tij depends only

on 2i− j. This fact will be needed later.

The general theory [15,16] tells us that (1− qn+1−ns)ψ(r, π−i∞ , s) is a poly-

nomial in q−s. The functional equation then allows us to give a bound on

the degree of this polynomial, see e.g. [15, Prop. 2.1] or [20]. As a simple

consequence we have

Proposition 2.1. The Gauss sum Dirichlet series associated to the constant

polynomial is

ψ(1, I, s) =
1 + qτ(ε)

1− qn+1−ns .

The main subject of the papers of Hoffstein [15] and Patterson [20] are

the residues of the Gauss sum Dirichlet series ψ(r, I, s) at s = 1+1/n. These

residues are related to the Fourier coefficients of the theta function on the

n-fold metaplectic cover of GL2(K). Following [20] we define

ρn(r) = lim
s→1+

1
n

(1− qn+1−ns)ψ(r, I,s).

In Section 5 we indicate how the theory of multiple Dirichlet series can be

used to deduce information on the coefficients ρ(r).
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3. The A2 multiple Dirichlet series

In this section we define and describe the functional equations of a dou-

ble Dirichlet series constructed from nth order Gauss sums. This series is

heuristically of the form

∑
c1

∑
c2

g(1, ε, c1)g(1, ε, c2)
(
c1
c2

)−1

|c1|s1|c2|s2
,

where the sum is over all c1, c2 nonzero monic polynomials.

More precisely, we define

(3.1) Z(s1, s2; η1, η2) =

(1− qn−ns1)−1(1− qn−ns2)−1(1− q2n−ns1−ns2)−1
∑
c1∼η1

∑
c2∼η2

H(c1, c2)

|c1|s1 |c2|s2
,

where the coefficient H(c1, c2) is defined by the following two conditions:

(1) If gcd(c1c2, d1d2) = 1 then

(3.2)
H(c1d1, c2d2)

H(c1, c2)H(d1, d2)
=

(
c1
d1

)(
d1

c1

)(
c2
d2

)(
d2

c2

)(
c1
d2

)−1(
d1

c2

)−1

.

(2) If p is prime, then

(3.3)
∑
k,l≥0

H(pk, pl)xkyl = 1 + g(1, p)x+ g(1, p)y + g(1, p)g(p, p2)xy2

+ g(1, p)g(p, p2)x2y + g(1, p)2g(p, p2)x2y2.

It can be seen that summing (3.1) over one of the indices, say c1, with

the other index fixed will produce a Dirichlet series

(3.4) E(c2, η, s1) = (1− qn−ns1)−1
∑

c1∈Omon
c1∼η

H(c1, c2)|c1|−s1

which is closely related to a Gauss sum Dirichlet series. This will have a

functional equation as s1 7→ 2 − s1, which will in turn induce a functional

equation in the double Dirichlet series Z. The rest of this section is devoted

to verifying this assertion and describing the precise functional equation of

Z.
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Let a be a function defined on Fq[t]. We say that a is twisted multiplicative

if a(xy) = a(x)a(y)
(
x
y

) (
y
x

)
whenever x and y are relatively prime. The first

Lemma below is a standard property of Gauss sums.

Lemma 3.1. Let r be a monic polynomial in Fq[t]. The map

x 7→ g(r, x)

is twisted multiplicative.

Lemma 3.2. Fix a cubefree monic polynomial c. Write c = c1c
2
2 where c1

is monic and squarefree. The map

x 7→ H(xc2, c)

H(c2, c)

is twisted multiplicative.

Proof of Lemma 3.2. First note that c2 is the minimal monic polynomial

such that H(c2, c) 6= 0, i.e., if H(d, c) 6= 0 then c2|d. To prove the Lemma,

take relatively prime monic polynomials x and y. We need to show

(3.5) H(xyc2, c) =
H(xc2, c)H(yc2, c)

H(c2, c)

(
x

y

)(y
x

)
Write

c2 = c
(1)
2 c

(2)
2 , c = c(1)c(2), with (xc

(1)
2 c(1), yc

(2)
2 c(2)) = 1

and compute both sides of (3.5) using (3.2). �

We can now express E(c, η, s) in terms of a Gauss sum Dirichlet series.

Lemma 3.3. Let c be a cubefree monic polynomial and write c = c1c
2
2 as

above. Then

E(c, I, s) =
H(c2, c)

|c2|s
ψ(c1, I, s).

Proof. Having already established the twisted multiplicativity of the coeffi-

cients

x 7→ H(c2x, c)

H(c2, c)

it remains only to verify that

(3.6)
H(c2P

l, c)

H(c2, c)
= g(c1, P

l)
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for all irreducible polynomials P and integers l ≥ 0. Note that

(3.7) H(c2, c) = H(1, c1)H(c2, c
2
2)

(
c1
c22

)(
c22
c1

)(
c2
c1

)−1

.

To go further, we break the argument into three cases, depending on whether

(P, c) = 1, P ||c1 or P ||c2. Since the equality is trivially satisfied for l = 0,

we will assume that l > 0.

If (P, c) = 1 the numerator of the left hand side of (3.6) is

H(c2, c)H(P l, 1)
( c2
P l

)(P l

c2

)(
P l

c

)−1

.

This is nonzero only when l = 1, in which we get

H(c2P, c) = H(c2, c)g(c1, P )

as desired.

If P |c1 we compute

H(P l · c2, c1 · c22)(3.8)

= H(P l, c1)H(c2, c
2
2)

(
P l

c2

)( c2
P l

)(c1
c22

)(
c22
c1

)(
P l

c22

)−1(
c2
c1

)−1

Since P ||c1 this expression is nonzero only when l = 2. Write c1 = P ĉ1. Thus

H(1, c1) = H(1, ĉ1)H(1, P )
(
P
ĉ1

) (
ĉ1
P

)
. Using this and again the definition

(3.2),(3.3) of H, we find

H(P 2, c1) = H(P 2, P )H(1, P )−1H(1, c1)

(
P 2

ĉ1

)−1

= g(P, P 2)H(1, c1)

(
P 2

ĉ1

)−1

= g(c1, P
2)H(1, c1).(3.9)

Combining (3.8) and (3.7) with (3.9) we conclude that

H(c2P
2, c)

H(c2, c)
= g(c1, p

2),

as was to be shown.

The proof of the third case (when P |c2) is similar and will be omitted. �



10 GAUTAM CHINTA

Lemma 3.4. Let c be a monic polynomial. Then

E(c, I, s) = |c|1−s
n−1∑
i=0

Ti,deg c(s)E(c, π−i∞ , 2− s).

Equivalently,

E(c,π−i∞ , s) =

|c|1−s
(
Pi,deg c(s)E(c, π−i∞ , 2− s) +Qi,deg c(s)E(c, πi−deg c−1

∞ , 2− s)
)
.

The functions Pij, Qij, Tij are as defined at the end of Section 2.

Proof. We may assume c is cubefree, as otherwiseD(c, s) = 0.Write c = c1c
2
2

with c1 monic and squarefree. By the previous Lemma,

E(c, I, s) =
H(c2, c)

|c2|s
ψ(c1, I, s).

Let deg ck ≡ jk(n), 0 ≤ jk < n for k = 1, 2. Thus

E(c, I, s) =
H(c2, c)

|c2|s
ψ(c1, I, s)

= H(c2, c)
n−1∑
i=0

|c1|1−sTij1(s)
ψ(c1, π

−i
∞ , 2− s)
|c2|s

= H(c2, c)
n−1∑
i=0

|c|1−sTij1(s)
ψ(c1, π

−i
∞ , 2− s)
|c2|2−s

= |c|1−s
n−1∑
i=0

Tij1(s)E(c, π−i−j2∞ , 2− s)

= |c|1−s
n−1∑
i=0

Ti−j2,j1(s)E(c, π−i∞ , 2− s).

The proof is completed by noting that Ti−j2,j1(s) = Ti,j1+2j2(s) = Ti,deg c(s).

�

From Lemma 3.4 follow immediately the functional equations of Z(s1, s2).

Theorem 3.5. Let 0 ≤ i, j < n. The collection of double Dirichlet series

Z(s1, s2; π
−i
∞ , π

−j
∞ ) satisfy the functional equations

(3.10) Z(s1, s2; π
−i
∞ , π

−j
∞ ) = Pij(s1)Z(2− s1, s1 + s2 − 1;π−i∞ , π

−j
∞ )

+Qij(s1)Z(2− s1, s1 + s2 − 1;π−j−1+i
∞ , π−j∞ )
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and

(3.11) Z(s1, s2; π
−i
∞ , π

−j
∞ ) = Pji(s2)Z(s1 + s2 − 1, 2− s2; π

−i
∞ , π

−j
∞ )

+Qji(s2)Z(s1 + s2 − 1, 2− s2; π
−i
∞ , π

−i−1+j
∞ ).

Remark. Let G be the symmetric group on three letter with generating

reflections σ1, σ2. Let V be the set of double Dirichlet series with meromor-

phic continuation to C2. For f(s1, s2) = f(s1, s2; I, I) in V , define

(f |σ1)(s1, s2) =
n∑

i,j=0

(
Pij(s1)f(2− s1, s1 + s2 − 1;π−i∞ , π

−j
∞ )

+ Qij(s1)f(2− s1, s1 + s2 − 1;π−j−1+i
∞ , π−j∞ )

)
and

(f |σ2)(s1, s2) =
n∑

i,j=0

(
Pji(s2)f(s1 + s2 − 1, 2− s2; π

−i
∞ , π

−j
∞ )

+Qji(s2) f(s1 + s2 − 1, 2− s2; π
−i
∞ , π

−i−1+j
∞ )

)
.

It turns out that these two transformations generate an action of G on V.

The functional equations of the previous theorem assert the invariance of

Z(s1, s2) under this group action.

4. Determination of the A2 multiple Dirichlet series

In this section we will explicitly write down the double Dirichlet series

of the previous section as rational functions in q−s1 , q−s2 . We will find it

convenient to introduce the variables x = q−s1 , y = q−s2 . We write

Pij(x) = −(qx)1−(−2i+j+1)n
q − 1

1− qn+1xn
(4.1)

Qij(x) = −τ(ε2i−j−1)(qx)1−n 1− qnxn

1− qn+1xn
,(4.2)

and Tij(x) =

(4.3)

{
−(qx)1−n (qx)(2i−j−1)n (q−1)+τ(ε2i−j−1)(1−qnxn)

1−qn+1xn if 2i− j − 1 6≡ 0

(qx)1−n otherwise



12 GAUTAM CHINTA

We also introduce

Z(x, y; i, j) = Z(s1, s2; π
−i
∞ , π

−j
∞ ) and Z(x, y; I, I) =

∑
0≤i,j<n

Z(x, y; i, j).

When we wish to make the notation reflect the dependence on n, we shall

write Z(n)(x, y; i, j).

Then the functional equation (3.10) takes the form

(4.4)

Z(x, y; i, j) = Pij(x)Z( 1
q2x
, qxy; i, j) + Qij(x)Z( 1

q2x
, qxy; j + 1 − i, j).

Summing over i, j between 0 and n− 1 we can also write this as

(4.5) Z(x, y, I, I) =
∑∑

Tij(x)Z( 1
q2x
, qxy; i, j).

Because of the reciprocity law we have as well the relation

(4.6) Z(x, y; I, I) = Z(y, x; I, I).

Knowledge of these functional equations allows the explicit computation

of Z(x, y; I, I). Let D(x, y) = (1−qn+1xn)(1−qn+1yn)(1−q2n+1xnyn) and set

N(x, y) = D(x, y)Z(x, y; I, I). The following proposition shows that D(x, y)

is the denominator of Z and gives a bound on the degree of the numerator.

Proposition 4.1. The function N(x, y) is a polynomial of x, y of degree

bounded by 2 in both variables.

Proof. The fact that the product N(x, y) = (1 − qn+1xn)(1 − qn+1yn)(1 −
q2n+1xnyn)Z(x, y; I, I) is entire is identical to the proof of Theorem 2 in [2].

To show that N(x, y) is a polynomial and bound the degrees, we argue as

in the proof of Theorem 4.1 of Fisher-Friedberg [13]. Let ~Z(x, y) denote the

column vector consisting of all the Z(x, y; i, j), with 0 ≤ i, j < n (with the

pairs (i, j) in some fixed order). In matrix notation the functional equation

(4.4) can be expressed as

~Z(x, y) = A(x) ~Z( 1
q2x
, qxy)

where A(x) is an n2× n2 matrix whose coefficients are the functions Pij(x)

and Qij(x). From (4.1) we have A(x) << x1−n, that is, every entry of the

matrix A(x) satisfies this bound as x→∞. Similarly,(4.6) implies

~Z(x, y) = B ~Z(y, x)
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where B is the identity matrix. (We write it like this because it helps us keep

track of an application of the functional equation.) Repeatedly applying the

two functional equations, we get

~Z(x, y) = A(x)BA(qxy)BA(y)B ~Z( 1
q2x
, 1
q2y

).

Multiply both sides by D(x, y)D( 1
q2x
, 1
q2y

):

(4.7) D( 1
q2x
, 1
q2y

) ~N(x, y) = D(x, y)A(x)BA(qxy)BA(y)B ~N( 1
q2x
, 1
q2y

)

where ~N(x, y) is the vector with components D(x, y)Z(x, y; i, j). To show

that N(x, y) is a polynomial of the stated degree, it suffices to show that

that each entry of ~N(x, y) is O(|xy|2). Let x, y → ∞ in (4.7). The terms

D(1/(q2x), 1/(q2y)) and ~N(1/(q2x), 1/(q2y)) remain bounded, while

D(x, y) = O(|xy|2n) and A(x)A(y)A(xy) = O(|xy|2−2n).

Therefore the right hand side is O(x2y2). This establishes that N(x, y) is a

polynomial in x and y of degree at most 2 in both x and y. �

We now present our main result.

Theorem 4.2. For n > 2 we have

(4.8)

Z(n)(x, y; I, I) =
1 + τ1q x+ τ1q y + τ1τ2q

3 x2 y + τ1τ2q
3xy2 + τ 2

1 τ2q
4 x2 y2

(1− qn+1xn)(1− qn+1yn)(1− q2n+1xnyn)

where τi = τ(εi).

Remark 4.3. The case n = 2 is dealt with in Fisher-Friedberg [13] and

Chinta-Friedberg-Hoffstein [7], where it is shown that

Z(2)(x, y; I, I) =
1 + q3/2x+ q3/2y − q9/2x2y − q9/2xy2 − q6x2 y2

(1− q3x2)(1− q3y2)(1− q5x2y2)
.

The method of proof below will work in this case as well, but a slight

adjustment needs to be made to deal with a degenerate Gauss sum.

Proof of Theorem 4.2. We first show that Z(x, y; 1, 1) = 0. With i = j = 1,

the functional equation (4.4) implies that

Z(x, y; 1, 1) = [P11(x) +Q11(x)]Z( 1
q2x
, qxy; 1, 1).
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Multplying through by D(x, y), we get

N(x, y; 1, 1) = −x1− qn+1xn

1− qn−1xn
N

(
1

q2x
, qxy; 1, 1

)
.

But because of Proposition 4.1 we know that N(x, y; 1, 1) is a constant

multiple of the monomial xy. It follows that N(x, y; 1, 1) = 0.

Furthermore, setting x = 0 and y = 0 and using Proposition 2.1, we

deduce that N(x, y) is of the form

N(x, y) = 1 + qτ(ε)x+ qτ(ε)y + αx2y + αxy2 + βx2y2,

for some constants α, β. To determine these constants, we again use the

functional equations. For example,

Z(x, y; 2, 1) = P21(x)Z( 1
q2x
, qxy; 2, 1) +Q21(x)Z( 1

q2x
, qxy; 0, 1).

We solve for α and find α = q3τ(ε)τ(ε2). Similarly applying the functional

equation to Z(x, y; 2, 2) we find β = τ 2
1 τ2q

4. This completes the proof of the

theorem. �

5. Examples

In this section we compute some examples of residues of multiple Dirichlet

series and deduce information on the residues ρn of the Gauss sum Dirichlet

series. By Lemma 3.3, we have

(5.1) lim
s1→1+ 1

n

(1− qn+1−ns1)Z(s1, s2; I, I) =
∑

c1,c2∈Omon

(c1,c2)=1
squarefree

H(c2, c1c
2
2)ρn(c1)

|c1c22|s2 |c2|2+2/n
.

When n = 3, we have

Z(x, y; I, I) =
1 + qτx+ qτy + q4x2y + q4xy2 + q5τx2y2

(1− q4x3)(1− q4y3)(1− q7x3y3)

where τ = τ(ε). Note that this series has a simple pole at s2 = 4/3. The

residue of Z at the simple pole s1 = 4/3 is a constant multiple of

1 + τq−1/3

(1− q4/3y)(1− q3y3)
= (const)ζ(s2 − 1/3)ζ(3s2 − 2).



MULTIPLE DIRICHLET SERIES OVER RATIONAL FUNCTION FIELDS 15

Comparison of this Dirichlet series with (5.1) suggests that, for a squarefree

monic polynomial c,

ρ3(c) = (const)g(1, c)|c|−2/3.

This agrees with [18], [19], in which Patterson determines the Fourier coef-

ficients of the cubic theta function.

Our second example involves the A3 series constructed from cubic Gauss

sums. We will not provide complete details here as we plan to return to the

topic more systematically in a later work. Let

Φ(s1, s2, s3) = (1− qn−ns1)−1(1− qn−ns2)−1(1− q2n−ns1−ns2)−1

(1− qn−ns3)−1(1− q2n−ns2−ns3)−1(1− q3n−ns1−ns2−ns3)−1.

The A3 series is defined by

(5.2) Z(s1, s2, s3) = Φ(s1, s2, s3)
∑

c1,c2,c3∈Omon

H(c1, c2, c3)

|c1|s1|c2|s2|c3|s3

where the coefficient H(c1, c2, c3) satisfies the twisted multiplicativity Eq.

(16) of [1] and is defined in Table 1 of [1] for prime power arguments

When n = 3, a lengthy computation similar to that given in the proof of

Theorem 4.2 shows that Z(s1, s2, s3) is a rational function in x = q−s1 , y =

q−s2 , z = q−s3 with denominator

(1− q4x3)(1− q4y3)(1− q4z3)(1− q7x3y3)(1− q7y3z3)(1− q10x3y3z3)

and numerator the sum of 24 terms

(5.3) 1 + qτx+ qτy + qτz + q4x2y + q4xy2 + q4y2z + q4yz2 + q5τx2y2

+ q5τy2z2 + q2τ 2xz − q12x3y3z3 − q9τxy3z3 − q9τx3y2z2 − q9τx2y2z3

− q9τx3y3z − q8xy2z3 − q8x3y2z − q12x2y4z3 − q12x3y4z2 − q6τ 2xy3z

+ q6τ̄x2yz2 − q10τ̄x2y4z2 − q13τx3y4z3.

We now show that residues of this series give the the rational function

field analogues of the two multiple Dirichlet series considered by Friedberg-

Hoffstein-Lieman [14]. These analogues have been defined and computed
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by Chinta and Mohler, [11]. They are given by

(5.4) ZFHL,1(s, w) =

(1− q1−3s)−1(1− q1−3w)−1(1− q3−3s−3w)−1
∑

c1,c2∈Omon

(
c1
c2

)
a(c1, c2)

|c1|s|c2|w

and

(5.5) ZFHL,2(s, w) = (1 − qn/2−ns)−1
∑

c1,c2∈Omon

g(c2, c1)

|c1|s+1/2|c2|w
.

Here a(g, f) is a multiplicative weighting factor defined on prime powers by∑
k,l≥0

a(pk, pl)xkyl = 1 + x+ y + x2 + y2 − x3y − xy3 − y2x3 − x2y3 − x3y3.

(The shift by 1/2 in the s variable in ZFHL,2 occurs because the Gauss sums

of [14] are normalized to have modulus 1. Also we have reversed the s and

w.)

It is shown in [11] that

ZFHL,1(s, w) =
1− q2−s−w

(1− q1−s)(1− q1−w)(1− q4−3s−3w)

and

ZFHL,2(s, w) =

1 + q1/2−sτ + q3/2−s−wτ + q2−2s−2τ̄ − q3−2s−2wτ̄ − q9/2−3s−2w

(1− q1−w)(1− q5/2−3s)(1− q9/2−3s−3w)
.

On the other hand,

(5.6) lim
s3→4/3

(1− q4−3s3)Z(s1, s2, s3) =

(1 + q−1/3τ)(1 + qτx− q7/3τxy + q10/3τ̄x2y − q14/3τ̄x2y2 − q20/3x3y2)

(1− q4/3y)(1− q4x3)(1− q7x3y3)(1− q3y3)(1− q6x3y3)
.

Hence

Res
s3=4/3

Z(s1, s2, s3) =

(const)ζ(3s2 − 2)ζ(3s1 + 3s2 − 5)ZFHL,2(s1 − 1/2, s2 − 1/3).

Similarly,

Res
s2=4/3

Z(s1, s2, s3) = (const)ζ(3s1 − 2)ζ(3s3 − 2)ZFHL,1(s1 − 1/3, s3 − 1/3).
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This identity of the residues of the cubic A3 multiple Dirichlet series with

the series studied in [14] was first established by Brubaker and Bump, [1].

(Actually, Brubaker and Bump work over the number field Q(
√
−3) but, up

to a finite number of bad primes, their methods will work over any global

field containing a cube root of unity.)

Guided by the Bump-Hoffstein conjecture [5], Brubaker and Bump further

suggest that n−2-fold residues of the nth order Weyl group multiple Dirichlet

series associated to the root system An should coincide with the nth order

double Dirichlet series of Friedberg-Hoffstein-Lieman. We hope that explicit

computations over the rational function field such as those described above

will give more evidence for this expectation.
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