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ABSTRACT. Let n > 2, let F' be a global field containing a full set of n-th roots of unity,
and let m be an isobaric automorphic representation of GL,(Ar). We establish asymptotic
estimates for the sum of the n-th order twisted L-functions of 7, L(s,7m ® X), for s such that
Re(s) > max(1l —1/r,1/2) if n = 2 and Re(s) > 1 —1/(r+ 1) if n > 2. As an application
we establish new non-vanishing theorems for twists of given order, including a simultaneous
nonvanishing result. When n = 2 and each factor of 7 is tempered we use this information on
asymptotics to prove that the twisted L-values at s = 1 give rise to a distribution function.

1. INTRODUCTION

Let F be a global field and let m be a unitary isobaric automorphic representation of
GL,(Ar) with L-function L(s, ). In this paper we study the family of twisted L-functions
L(s,7®x), where y ranges over the idele class characters of fized finite order. In particular
we establish the existence of nonvanishing twists for given s inside the critical strip but
sufficiently close to the edge.

The existence of nonvanishing twists of some finite order for 7 on GL(2) was established
by Rohrlich [Ro]. Building on this work, Barthel and Ramakrishnan [BR] show that for 7 a
cuspidal automorphic representation of GL,(Ar), r > 3, and given s with Re(s) > 1—1/r
there exist infinitely many primitive ray class characters x such that L(s, 7®x) # 0. Under
the stronger assumption of temperedness, Barthel and Ramakrishnan find infinitely many
nonvanishing twists for s satisfying Re(s) > 1—2/(r+1). Luo, Rudnick and Sarnak [LRS]
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show a similar result in the case of a degree r Rankin-Selberg convolution L(s,7; X 71)
(so r is a square), replacing the assumption of temperedness by the observation that the
Rankin-Selberg L-series has positive coefficients. By Langlands functoriality, this L-series
is conjecturally of the form L(s,7) for some isobaric automorphic representation .

We sharpen these results by showing that, in fact, for any global field F' and any isobaric
automorphic representation 7 of GL,(Ap), r > 2, for given s with Re(s) > 1 — 1/r there
exist infinitely many quadratic characters y such that L(s, 7 ® x) # 0. In addition, if the
field F' contains the n-th roots of unity for some n > 2, then for s with Re(s) > 1—-1/(r+1)
there exist infinitely many characters x of order exactly n such that L(s,m ® x) # 0. In
both these results the characters may be specified at a finite number of places.

The methods of Barthel-Ramakrishnan combined with the large sieve can also be used to
give non-vanishing results for twists by characters of fixed order near Re(s) = 1. However,
the results of this paper—in particular, the uniformity of the interval of nonvanishing
over all number fields—seem to be stronger than can be obtained by the large sieve in
its present form. Our methods are based on properties of automorphic L-functions and
double Dirichlet series.

Our results are formulated for a general isobaric automorphic representation. Let 7;,
1 <j <k, be cuspidal automorphic representations of GL,,(Ar) with r = ZTzl ;. Recall
that Langlands’s theory of Eisenstein series allows one to construct an isobaric automorphic
representation 7 = HL7; of GL.(AF) such that the standard L-function of  is given by
m
(0.1) L(s,m) = [ ] L(s, 7).

Jj=1

Since L(s,m ® x) = H;”Zl L(s,m; ® x), our nonvanishing result establishes a simultaneous

nonvanishing theorem for twists.
These results on nonvanishing are consequences of our main theorem, which we now
state.

Let n > 2 be a fixed integer, and let F' be a global field with n n-th roots of unity. Let
S be a finite set of places containing all archimedean places, all places dividing n, and such
that the class number of the ring of S-integers is 1. To each square-free ideal d prime to S
one may attach (as in Fisher-Friedberg [FF1]) an idele class character x4 of order n such
that if d = (dy) is principal with dy sufficiently congruent to 1 then x4 is the character
attached by class field theory to the extension F({/dy)/F. Let C be a sufficiently large
ideal supported on S (see Section 2 for the precise condition) and let Ho be the (narrow)
ray class group modulo C. For 7 an automorphic representation let Lg(s,7) denote its
standard L-function with the factors at v € S removed. Then we have:

Theorem 1.1. Let w be a unitary isobaric automorphic representation of GL,.(Afp) (not
necessarily cuspidal) which is unramified outside S. Let A be a class in the ray class group
He. Fiz s € C with Re(s) > max(1 —1/r,3) if n =2 and Re(s) >1—1/(r +1) if n > 2.
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(1) Let k > 0 be a sufficiently large integer, depending on F,n,r. Then for any € >0

dl\" X 1
S Loy (1- D) = SOX Lo (xir
= X k+1

d sq-free
1<|d|<X

as X — 00, where the sum is over square-free integral ideals d in the ray class A,
and where cg(s) is a constant given explicitly below (see equation (2.3)). If S is
sufficiently large then cg(s) is nonzero.
(2) Let n = 2, let w be self-contragredient, and let s be real. If Lg(s,m ® xq) > 0 for
all d then
Z Ls(s,m® xa) ~ cs(s)X
deA
d sqg-free
1<|d|<X
as X — oo, where the sum is over square-free integral ideals d in the ray class A
of absolute norm between 1 and X .

Similar results hold for the full L-function L(s, 7 ® x4) in place of Lg(m ® xq). See
Section 3.

Corollary 1.2. Let 7 be a unitary isobaric automorphic representation of GL,.(Ap), r > 2.
Let A be a class in the ray class group Heo. Let Re(s) > 1 —1/(r +1). Then there exist
infinitely many characters xq4, d € A, of order n such that

L(s,m® xa) # 0.

If n = 2, the conclusion is true for Re(s) > 1 —1/r.

Since Theorem 1.1 applies to all isobaric automorphic representations it also gives in-
formation about moments; see (0.1). In the case that m = B72,7; with 7; tempered, this
information is sufficient to establish the existence of a distribution function F(y) giving the
limiting proportion of the quadratically twisted L-values L(1, 7 ® x) of magnitude at most
y. For the simplest case, that is, for L(s, x4) the family of Dirichlet L-series associated to
the Kronecker symbols yg4, such a distribution result was obtained (in fact, for d > 0 and
Re(s) > 3/4) by Chowla and Erdos [CE]. The analogue of Theorem 1.1 was established by
Barban [Bal], who showed that for k € N,

Z L(17Xd)k N/r'an
1<—d<X

where the rp are explicitly given non-zero constants. This asymptotic estimate for the
k-th moments together with a theorem of Fréchet and Shohat [F'S] allows one to establish
a Chowla-Erdés type value distribution result for d < 0 and s = 1; see [Ba] and Section 3
below.

In Section 3 we shall use a similar method to show
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Corollary 1.3. Suppose that ™ = HBYL, 7 is a unitary isobaric automorphic representation
with each m; tempered. Let n = 2. Fiz S, A as above. Then there exists a non-decreasing
right-continuous function Fr 4 : R — [0,1] such that

lim {d € A,d sq-free,|d| < X:|L(1,7® xqa)| < y}| .
X —o0 {d € A,d sq-free,|d| < X}|

FT&',A(y)

at all points of continuity y of Fr a(y).

The requirement of temperedness here is necessary to fulfill the hypotheses for the theorem
of Fréchet and Shohat.

Notice that if L is a motivic L-function of odd degree then 1 is a critical value in the
sense of Deligne and these L-values are of arithmetic interest. For example,

Corollary 1.4. Let k be a totally real number field. Let A be the trivial ray class in He.
Then there exists a non-decreasing right-continuous function Fj : R — [0,1] such that

) V—=d))
{(d) € A, (d) sq-free,d > 0,]d| < X: HEV_) 4
lim waQaVfa R Fk(y)

X—00 {d € A,d sq-free, |d| < X}|

for all points of continuity y of Fy(y). Here h(k(v/—d)) is the relative class number of
k(v/—d)/k, wq is the number of roots of unity in k(v/—d), fq is the norm of the conductor
of X—a and Qq =1 or 2 as in [Wa], Theorem 4.12.

This follows from the Dirichlet class number formula for k(v/—d)/k (see [Wa], for example).
Similarly, one may adjoin v/d where d € k has exactly one positive embedding . A moment
result in such a case was proved with certain restrictions on k& by Peter in [Pe].

Distribution results similar to Cors. 1.3 and 1.4 can also be obtained by the use of the
large sieve as noted above; we thank Peter Sarnak for pointing this out to us. Also, in the
case of the Dirichlet L-series L(s, x4), much more is known about the distribution function,
see for example [GS| and the references there.

The proofs of our results are based on a double Dirichlet series obtained by summing
the twisted L-functions. Such series first arose from the study of certain Hecke-Rankin-
Selberg type integrals of metaplectic Eisenstein series (see [BFH1]), but it is not apparent
that the series used here may be so-obtained. Instead, our work is based on the convexity
principle for holomorphic functions of two complex variables, whose use to study such series
was first observed by Bump, Friedberg and Hoffstein [BFH2]. In [DGH,FF1-2] a similar
point of view was taken. In particular, in [DGH] the approach of searching for a multiple
Dirichlet series which is a weighted sum of twisted L-functions with a full meromorphic
continuation in all variables was formalized. Unfortunately the desired weighting factors
are not easy to obtain (see [BFH,FF1-2] for some low rank instances when n = 2). In
this paper we take an opposite point of view - studying a multiple Dirichlet series which
is an unweighted sum of twisted L-functions. This object has more limited meromorphic
continuation but we show that this continuation still has consequences. We analyze the
multiple Dirichlet series in several ways (one related to metaplectic Eisenstein series), and
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use this analysis to establish its continuation to different overlapping tube domains. By
the convexity principle the double Dirichlet series then continues to the convex hull of the
union of these regions. This information allows us to establish Theorem 1.1 by Tauberian
methods.

2. THE DOUBLE DIRICHLET SERIES

Fix n > 2 and let F' be a global field with n n-th roots of unity. In the number field
case, let O denote the ring of integers of F', and let Sy be a finite set of non-archimedean
places containing all places dividing n and such that the ring of Sy-integers Og, has class
number 1. Let S, denote the set of archimedean places and let S = Sy US. Similarly, in
the function field case, let C denote the smooth projective curve with function field F' and
choose a finite set of places S such that the divisors supported on S represent all classes in
Pic(C). Let (£) be the power residue symbol attached to the extension F({/a) of F. To
properly formulate the double Dirichlet series, let us extend the n-th power residue symbol
as in Fisher-Friedberg [FF1]. We review the definition.

For each place v, let F), denote the completion of F' at v. Suppose first that F' is a
number field. For v nonarchimedean, let P, denote the corresponding ideal of O. Let
C =1Tl,e s, P with n, > 1 sufficiently large that a € Fy, ord,(a — 1) > n, implies
that a € (F)". Let Hco be the ray class group modulo C' (the narrow ray class group
if n = 2 and F has real embeddings), and let Rc = Ho ® Z/nZ. Write the finite group
R¢ as a direct product of cyclic groups, choose a generator for each, and let &) be a set
of ideals of O prime to S which represent these generators. For each Ey € & choose
mp, € F* such that EqOs, = mp,0s,. Let £ be a full set of representatives for R¢c of
the form [z c¢, E)® ngp, € Z. f E =1] Eocts E;*™ is such a representative, then let
mg = HEQGSO m%fo. Note that EOs, = mpOg, for all E € £. For convenience only we
suppose that O € £ and mp = 1.

Let J(S) denote the group of fractional ideals of O coprime to Sy. Let I,1; € J(S) be
coprime. Write [ = (m)EG"™ with E € £, m € F*, m = 1 mod C, m positive under all real
embeddings of F' (we write m > 0; this condition is trivial unless n = 2) and G € J(S),

(G,I;) = 1. Then as in [FF1], the n-th power residue symbol (ml_nle> is defined, and if

T, T
In view of this define the n-th power residue symbol (%) by <%> = <mZLE> and the

I = (m')E'G' is another such decomposition, then E' = E and (m/mE> = <mmE

character x; by x7(I1) = (%) This depends on the choices above, but we suppress this

from the notation. Let S7 denote the support of the conductor of x;. One may check that
if I = I'G™, then x;(I1) = x1/(I1) whenever both are defined. This allows one to extend
X1 to a character of all ideals of J(S U Sr). One has, as in [FF1]

Proposition 2.1. Reciprocity — Let I, J € J(S) be coprime, and (I, J) = x1(J)xs(I) L.
Then o(I,J) depends only on the images of I and J in Rc.

The definitions in the function field case are similar, but it is move traditional to work
with divisors and write them additively. For more details see [FF1-2], where the case n = 2
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is discussed in detail. Throughout this section we keep the number field notation, but the
argument for function fields is the same.

For d an integral ideal, let |d| denote its absolute norm. Let Z(S) denote the integral
ideals prime to Sy. Let 7 be an isobaric automorphic representation on GL,(Afr), not
necessarily cuspidal, which is unramified outside S and let Lg(s, 7 ® x4) be the L-function
for m twisted by the character x4, with the primes in S removed. (Note that the Euler
factor is also 1 at the primes dividing d.)

Before proceeding to give the proof of Theorem 1.1, let us record a necessary observation
about the functional equation of such a 7. So let m be as above. Then there is a partition
r o= 27:1 r; and a set of unitary cuspidal automorphic representations m; such that
T = @I m;. If £ is an idéle class character then the twisted L-function L(s, m ®¢) satisfies
a functional equation

(2.1) Ls,m®¢&) =¢(s,T@&)L(1 — 5,7 @&,

where €(s, 7 ® &) is the epsilon factor of 7 ® &.

Lemma 2.2. Let d,e € O(S) be square-free, and suppose that xq = XeXm With m € F*,
m = 1mod C and m > 0 if n = 2 (this equality holds if and only if d,e project to the
same class in Rc). Then e(s, 7 @ xq) = €(1/2, xm)" Xx(d/e)|d/e|" />~ =e(s, m @ x.).

Here €(1/2, x.n) is given by a (normalized) n-th order Gauss sum, as in Tate’s thesis. If
n = 2 then it is identically 1.

Proof. We have e(s,m) = |D"f(r)|'/?%¢(1/2, ) where D is the different of F, f(m) is
the conductor of m, and €(1/2,7) is the central value of the epsilon-factor of 7. Since 7
is unramified outside S, this central value is a product of local factors for v € S (each
depending also on the choice of additive character). Now x4 = XeXm Where m =1 mod C.
By the hypotheses on C, this implies that the local character x,,, =1 for all v € S, and
the local factors for v € S are equal. Since we are working with the twisted representations
T ® Xd, TR Xe, we must also compute the contributions from the places v dividing d or
e. At these places each 7;, is unramified principal series and the comparison is obtained
from the comparison of G'L;-epsilon-factors. These are computed as in Tate’s thesis. (For
more details see Lemma 2.2 in [FF1] and the proof of Theorem 3.1 in [FF2].) [

Proof of Theorem 1.1. We turn to the double Dirichlet series construction. The L-function
for 7 is of the form

L(s,m) = Lg(s,m) L(s,m;5)

where L(s,m;S) is the contribution from places v € S and where the contribution from
the places prime to S may be written as a Dirichlet series

Ls(s,m)= Y a(m)|m|™

meZ(S)
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(m ranging over the ideals of O prime to S). Let A be a class in He. Let

' Ls(s,m® Xaq)

ZA(Saw;ﬂ—) = Z ‘d|w )

deA

where the sum is over integral ideals d in A, and the prime on summation indicates d
square-free. Since L(s,m) converges absolutely for Re(s) > 1, the double Dirichlet series
Za(s,w;m) is absolutely convergent for Re(s) > 1, Re(w) > 1. We are interested in obtain-
ing the analytic continuation of Z4(s,w;m) to a region containing Re(s) = 1, Re(w) = 1.

On the one hand, we have the convexity bound for L(s, T ® x4) which follows from the
functional equation (2.1). If L(s, 7 ® xq) is entire then

Ls(s, T® Xd) <. max{l, |d|r(1—0)/2—|—e7 |d|r(1/2—a)+e}’

for € > 0, where o = Re(s). If £ is the maximum order pole of L(s,m ® xq) for d € A then
we conclude that (s — 1)* Z4(s,w; ) is absolutely convergent for

Re(w) > max{1, - (1~ Re(s)) + 1,7~(% ~ Re(s)) + 1}.

To extend past the domain of absolute convergence let us interchange the order of
summation. We obtain

' Ls(s, ™ @ xa)

ZA(S7w;7T) - Z |d|w

deA
_ Aam ! Xa(m)
- Z EE Z d[w

meZ(S) deA, (dm)=1

For m € Z(S), let [m] denote the class of m in He. Also let he be the order of the ray

class group He and He be its group of characters. Upon using the power reciprocity law
as formulated in Proposition 2.1 and the orthogonality relations, for m € Z(.S) we obtain

> oy Y 0
deA,(d,m)=1 ] deA,(d,m)=1 d]

_ 0‘(Ah’_c[m]>n§c 1= (A) Do (10, 1xm),

where
/ 1n(d)Xm(d)
d|v

D(w,mxm) = Y

deZ(S),(d,m)=1
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If ;4 now denotes the Mobius function of ideals of O, then

Dm(wvnxm) = Z Z |d|w d)

dez(S),(d,m)=1 e2?|d

(2.2) -y p(e) 77|2€(|C;)w><51(6) 3 1(d) X (d)
e€Z(S),(e,m)=1
Linus (W, nXm)

B LmUS(2w7 nQXEn) .

dez(S),(d,m)=1

where the subscripts indicate that the primes in S and those dividing m are removed from
the last quotient of GL; L-functions. Thus D,,(w,nX,) is holomorphic for Re(w) > 1/2
if 7\ is not the trivial character; otherwise, it is meromorphic in this region with only
a simple pole at w = 1. Note that this occurs only when n = 1 and m is a perfect n-th
power.

It is the residue at this pole which gives the main term in Theorem 1.1. Note that for
Re(s) > 1

29 et =tesns 2o = i (TEG) & TGy

meZ(S)

where (p = [[({Fp, is the Dedekind zeta function of F' and k is its residue at w = 1.
We show later in this proof that this Dirichlet series representation, initially valid for
Re(s) > 1, remains true for Re(s) > max(1—1/r, %) if n = 2 and for Re(s) > 1—1/(r+1)
if n > 2. Moreover, we will show that for S sufficiently large, the residue is non-zero for s
in this range.

Next let us note that for € > 0, Re(w) > 1/2,w # 1 and Imw = ¢,

(2.4) S IDu(w,nxm)? <o XL+ K
meZ(S),m|<X

Here K is a constant depending on the ground field F', and on n,r. Indeed, this follows
from the evaluation (2.2) since the L(w, nx.,) occur as Fourier coefficients of the Eisenstein
series on the n-fold cover of GL,, induced from the theta function on the n-fold cover of
GL,_; (see Suzuki [Su] and Banks, Bump, and Lieman [BBL|); alternatively it follows by
using the associated double Dirichlet series as in Diaconu [Di]. See also [FHL].

Moreover, from the properties of the Rankin-Selberg L-function L(s,7 ® ), it follows
that

> lam]* < X (log X)
Im|<X

for some integer A. Therefore by the Cauchy-Schwarz inequality,

(2.5) 3" am D (w, mxm)|” <ae XL+ 1)
Im|<X
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By partial summation, we conclude that (w — 1)Z4(s,w;7) is holomorphic for Re(s) > 1,
Re(w) > 1/2 and that
(w—1)Za(s,w;m) <a.e (1+[t)E.

Combining this with the region of absolute convergence deduced from convexity esti-
mates on Lg (s, T®X4), we have established the holomorphicity of (w—1)(s—1)*Z (s, w; )
on the union of the tube domains

Ty = {(s,w) : Re(w) > 1/2,Re(s) > 1}

and
Ty = {(s,w) : Re(w) > max(1, 5(1 — Re(s)) + 1,7(5 — Re(s)) + 1)}.

In the case n = 2 we can further enlarge the region of continuation as follows. For
convenience let us suppose that » > 2; the case » = 1 is similar but simpler. We apply the
functional equation (2.1). (See also Remark 2.5 below.) Note that for d € A the product
of local L-factors L(s, ™ ® x4;.5) depends only on A; so we write it L(s,m ® x4;.5). Also,
by Lemma 2.2 we may write €(s, 7® xq) = A(s) xx(d)|d|"~/2) where A(s) is a monomial
function depending only on 7 and A. Thus we have

' Ls(s,m® Xaq)

Za(s,w;m) = Z

a Y
L1 —5,7®x4;95) Z' Xr(d) Ls(1 — 8,7 ® Xa)
= L(S, O Xa; S) |d|w+r(s—1/2) .

deA

By interchanging summation and using the Cauchy-Schwarz inequality as above, one thus
sees that Z4(s,w; ) has holomorphic continuation to the tube domain

T3 :={(s,w) : Re(s) < 0,Re(w) > —rRe(s) +r/2 +1/2}.

By the analytic continuation of holomorphic functions of two complex variables on
tube domains to the convex hull [H6], the function (s — 1)*(w — 1)Z4(s,w;m) thus has
holomorphic continuation to the convex hull of the tube domain T3 U T5 for n > 3 (resp.
Ty UTy, UTs5 for n = 2).

Note that Lg(s, ™ ® x4) is entire for d € A unless d = (1). Hence Z4(s,w;7) can have
a pole at s = 1 only if (1) € A. If this is the case, we will find it more convenient to work
with Z4 (s, w;m) — Lg(s,m). Let us define

Za(s,w;m)— Lg(s,7) if (1) e A

ZY S,W;m) =
al ) {ZA(s,w;w) otherwise.

Observe that
Resy—1 Z(s,w;m) = Resy—1 Za (s, w; ).
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Theorem 1.1 will now be a consequence of a standard Tauberian argument, as follows.
First observe that as the convex hull of the tube domains is a domain of holomorphy it
follows from the Phragmen-Lindel6f principle that the function (w — 1)Z9 (s, w;m) <.
(1+ [t))¥ in the entire domain. Choose k to be a positive integer with k > K + 1, with K
as in (2.4). Applying the integral transform

1 [2reee 2% dw w5 =1/)F itz >1
21 Jo oo ww4+1)...(w+k) |0 if0<z<1

we obtain first

1 [2F 20 (s, wym) 2 dw 1 )"
‘ y Wy S LS(S,ﬂ'@Xd)( __) )
210 Jo_joo w(w+1)...(w+k) k! def%é(l) !
d sq-free

Moving the line of integration to Rew = 1/2 + ¢, for € > 0, the above equals

1 1 1/24e+ico 70 . w,g
—  Resy=1 Zg(s,w;w)x+_. A(s,wym) ¥ dw ’
(k+1)! 270 J1 j24e—ico ww—+1)...(w+k)

as Z9(s,w;m) is an analytic function of w in this region except for a simple pole at
w = 1. The integral converges absolutely and is bounded above by z!/2T¢, so letting
cs(s) = Resy=1 Z (s, w; ) we obtain part (1) of Theorem 1.1. In the case of part (2) the
values being averaged are non-negative, so the Wiener-Ikehara Tauberian theorem applies
to give an unweighted asymptotic result.

To complete the proof of Theorem 1.1 we must now analyze the residue of Z (s, w; ) at
w = 1. This is given for Re(s) > 1 by the expression (2.3). Thus this residue is a nonzero
constant times the Euler product

1 (g

(v,8)=1 g=1

where we have set |P,| = ¢, for convenience. We analyze the convergence of this product
separately in the cases n > 2 and n = 2.
Suppose that the Satake parameters of m, are given by ay,;, 1 <7 < r. Then by the

result of Luo, Rudnick and Sarnak [LRS], |a, ;| < i/ 21/ (T2+1). Thus
9 ) v, q
= S TLobs < palngget 2=/,
ki+--+kr=ng 1
where p,.(ng) is the number of ordered partitions of ng into r non-negative integral pieces. If

r = 2 one may do better using the estimate of Kim and Shahidi [KS], namely |a, ;| < qi/ .

For later use, define
1/2=1/(r+1)+1/(r*+1) ifr>2,n>2
§=6n=2% 1/2—1/r+1/(r*+1) ifr>2n=2
7/18 if r =2.
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Also, note the trivial bound
pr(ng) < (ng+1)".

First, suppose n > 3. Recall that an infinite product [ [, (1 +b,) converges absolutely if
and only if the sum ) |b,| converges. For Re(s) > 1 —1/(r + 1) we have

|CLPn9 | pr
Z Z ng “ngRe(s) — Z Z ngé
(v,9)=1g=1 4 (v,9)=19=1 v
ng +1
Z Z ng<5
(v S)=1g=1 Qv
This series converges absolutely because nd > 1.
Now suppose instead that n = 2. To prove the absolute convergence of the Euler product
(2.6), we make the observation that the residue is well approximated by the symmetric

square L-function, which converges absolutely for Re(s) > 1 by Rankin-Selberg theory.
Note that if 7 = B2, 7; then

m

L(s,7,Sym?) = H L(s, 7, Sym?) H L(s,m; x ;1)

j=1 1<j<j’<m

so we make use of the analytic properties of Rankin-Selberg convolutions as well. Let

L(s,m,Sym?) = [[ T (s)

where

Tv(s) = H (1 - av,iav,jqu_s)_l = H (1 - ﬁv,iqv_s)_la

1<i<j<r 1<i<r’

say, with 7’ = r(r +1)/2 and |3, ;| < q1 2/ Then for Re(s) >1—-1/r,

295 Z 6 “ﬁvr'

g>2 Qv ki+---k,. =g

T,(2s) =

(P2)

’U

=1+ + 0, (g, ).

Similarly,
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Hence the quotient
1+ qffkl Zg 1 q295
T,(2s)

and the product over all places

H (1 + Or(max(qv_M, qv_l_%)))

v

=1+ O,(max(q,*°, ¢, '),

converges absolutely. From the absolute convergence of the symmetric square L-function
for Re(s) > 1 the convergence of (2.6) follows.

In all cases the Euler product (2.6) is absolutely convergent for Re(s) as in Theorem
1.1. It is hence non-zero provided none of the terms vanishes. We may guarantee that
none of the terms vanishes by throwing out a finite number of primes, i.e. by enlarging
the set S. Explicitly, we desire g, sufficiently large that

q > a pr9
v
12

is less than 1 in absolute value, for Re(s) > 1—1/r if n =2 or for Re(s) > 1—1/(r +1) if
n > 3. Using the absolute bound for the Fourier coefficients, for such s one has

oo
qvq:_ 1 Z aigz Z ng¢5 :
g=1

For the partition function

we use the bounds
(QT)T_l

(r—1)V

pr(ng) <
for ng < r, and by Stirling’s formula

pr(ng) < A™

if ng > r, for some absolute constant A. Therefore, if ¢, is sufficiently large,

00 [r/n]
Z ngé Z Z
g=1 = g>r/n
7“ 1 [r/n]
o W 2 ()

g>r/n

(2T)T_l —nd S\r
<
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for some absolute constants C7, Cy. This quantity will be less than 1 provided

néd (2T)T_1 n
Gy >> ma,x{(r_l)!,A }

This concludes the proof of Theorem 1.1. [ |

Remark 2.3. Changing the choices made in defining the characters x4 above would amount
to changing 7 to 7® x where y is an idele class character which is obtained from a character
of Rc.

Remark 2.4. In fact, the proof of Theorem 1.1 does not make use of the full hypothesis
that 7 is an automorphic representation of GL,(Ag). If D(s) is any Eulerian Dirichlet
series, absolutely convergent for Re(s) > 1, with suitable functional equations under G L
twists, satisfying an estimate for the growth of the coefficients as in (2.5), and such that
the residue (2.6) is well-behaved, then the proof of Theorem 1.1 goes through and the
growth estimates of Theorem 1.1 hold. For example, this holds for any Dirichlet series in
the Selberg class which has suitable functional equations under GL; twists.

Remark 2.5. One may also make use of the functional equation to increase the region of
continuation of Z4 (s, w;m) in the cases r = 1, n arbitrary and r = 2, n = 3. We shall not
pursue these cases here since in fact further work allows one to continue an appropriate
modified double Dirichlet series to all of C2. (See Friedberg-Hoffstein-Lieman [FHL] for
the first case and Brubaker-Bump-Friedberg-Hoffstein [BBFH] for the second.)

3. VALUE DISTRIBUTION OF L(1,7 ® x4)

Let {uy} be a sequence of Borel probability measures on R. One says that this sequence
converges weakly to a measure p if

/fduw/fdu, as n — 00

for all continuous, compactly supported functions f on R. Suppose F' (resp. F),) is the
distribution function of p (resp. ), i.e., F'is the non-decreasing right-continuous function
defined by

F(z) = p((~o0,a)).

Then p,, — p weakly if and only if

lim F,(z) = F(x)

n—oo

for all points of continuity = of F. The k-th moment of a measure p on R is defined to be

Ml i= [ dua) = [ atiFG)
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if this limit exists.

A theorem of Fréchet and Shohat [FS],[Bi] allows us to deduce weak convergence from
convergence of moments. Precisely: let {u,} be a sequence of Borel probability measures
on R such that for every positive integer k, the limit

Mk = lim Mk[ﬂn]

n—oo

exists and the power series
Mwk

U(w) = i

k>0

has positive radius of convergence. Then there exists a measure y such that
(i) pn converges weakly to p,

(ii) for all positive integers k, My, = My[u], and

(iii) for ¢ € R sufficiently small, the characteristic function 1 of pu,

W(t) == /IReitzduz,
is given by
W(it) = ¢(2).

We now turn to the proof of Corollary 1.3. For a positive integer X, we define the
probability measure px (depending on A) by

{d € A, d sq-free, |d| < X:|L(1,7 ® xaq)|? < y}|
px ([0,y)) =
{d € A,d sq-free, |d| < X}

for all y > 0. Fix S as in Theorem 1.1. Let n = 2. Since for d € A the local character x4, is
independent of d for v € S, it follows that the quotient L(1,7® x4)/Ls(l,7®@xa) = gs,4 is
independent of d. (This constant gives the dependence of the distribution function on the
ray class A.) Let Lg(s,m B7)* =3 by(m)|m|~*. By Theorem 1.1 applied to =@ B 75*
for each k € N there exists a constant c; given by the Euler product

/-f\g |2k (ro(2 G = bi(P)
oo e (M) I (i 5

(v,9)=1 g=1 v

such that
Jim, Mefix] =

Now

b(Py) = Y bi(P)---bi(PF).

i1+ Fig=m
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If 7 = Hr; and each 7; is tempered, we have

[b1(Py)] < par(d),

where ps,-(7) is the partition function in Section 2. Hence

bk (Py")] < Z par(i1) - p2r(ix) = park(m).

i1 tig=m

The estimate
cr << exp(crkloglog(rk))

now follows easily, see e.g. Luo [Lu|. By the theorem of Fréchet and Shohat described
above, Corollary 1.3 holds. |

We remark that this last estimate shows that the moment generating function ¥ is
entire.
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