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Abstract. Let π be a self-contragredient cuspidal automorphic representa-

tions of GL3(AQ). We show that if the symmetric square L-function of π has a
pole at s = 1, then π is determined by central values of quadratic twists of its

L-function. That is, if π′ is another cuspidal automorphic representations of

GL3(AQ) for which L( 1
2
, π⊗χ) = L( 1

2
, π′⊗χ) for sufficiently many quadratic

characters χ, then π ' π′.

1. Introduction

Let π be a self-contragredient cuspidal automorphic representation of GL3(AQ)
and χ a Dirichlet character. Then the twisted L-function L(s, π⊗χ) initially defined
for <(s) > 1, is known to have an analytic continuation to C and to satisfy a certain
functional equation relating the values at s to those at 1 − s. The main result of
this paper is that knowledge of these values at the central point s = 1/2 for twists
by quadratic Dirichlet characters,at least when the symmetric square L-function
L(s, π, sym2) has a pole at s = 1, is enough to determine π. Precisely, we prove

Theorem 1.1. Let π and π′ be two self-contragredient cuspidal automorphic rep-
resentations of GL3(AQ). Suppose that L(s, π, sym2) has a pole at s = 1. Fix an
integer M and let X be the set of all quadratic Dirichlet characters of conductor
relatively prime to M. If there exists a nonzero constant κ such that

(1.1) L( 1
2 , π ⊗ χ) = κL( 1

2 , π
′ ⊗ χ)

for all χ ∈ X, then π ' π′.

Remarks
(1) The L-functions in (1.1) are the full automorphic L functions, including the

archimedean component. However, as will be clear from the proof of the
theorem in section 5, if S is any finite set of places of Q (possibly including
the infinite place), the conclusion of the theorem is still true if (1.1) is
replaced by

LS( 1
2 , π ⊗ χ) = κLS( 1

2 , π
′ ⊗ χ)

for all χ ∈ X. Here

LS(s, π) =
∏
v 6∈S

L(s, πv).

Later, we will also use the notation

LS(s, π) =
∏
v∈S

L(s, πv).
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(2) The condition L(s, π, sym2) has a pole at s = 1 is satisfied when π is the
Gelbart-Jacquet lift [4] of an automorphic representation on GL2(AQ) with
trivial central character. In fact, the converse is true as well. By the work of
Ginzburg-Rallis-Soudry (see e.g. [5]), for an irreducible cuspidal automor-
phic representation π of GL3 with the partial symmetric square L-function
LS(s, π, sym2) having a pole at s = 1, there exists an irreducible cuspidal
automorphic representation σ of Sp2 = SL2, which lifts functorially to π.
We thank Dihua Jiang and David Ginzburg for clarifying this point for us.
This fact will make the sieving argument of section 3 somewhat easier.

For holomorphic newforms of congruence subgroups of SL2(Z), the analogous
result was proved by Luo and Ramakrishnan [12]. Their idea is to consider the
twisted averages of the form ∑

d<X

L( 1
2 , f, χd)χd(r)

and show that asymptotics for these expressions as X → ∞ involve the Hecke
eigenvalues of f. We prove our result by a similar method. However, the averaging
process for a GL3 cuspform is more delicate, and we use the method of double
Dirichlet series, rather than the method of the approximate functional equation
used in [12]. The double Dirichlet approach on GL3 was first carried out by Bump-
Friedberg-Hoffstein [2] and Diaconu-Goldfeld-Hoffstein [3]. We rely heavily on the
results of these papers.

As the base field is Q, it is likely that the method of the approximate functional
equation will work here as well. Our reason for using the multiple Dirichlet se-
ries approach is that it provides a considerably simpler framework and makes the
analysis quite easy. The extension to GL3(AK) for K an arbitrary number field,
however, remains elusive from the point of view of both approaches.

One goal of this paper is to illustrate the source of this difficulty in our method.
The problem arises from the need to apply a “Lindelöf-on-average” bound (Lemma
3.2) to carry out the sieving process of section 3. We establish this bound by
appealing to a character sum estimate of Heath-Brown [6], which is valid only over
Q. There are two possible ways to solve this problem: first, establish Lemma 3.2 over
an arbitrary base field, or second, prove a “uniqueness” result for the finite Euler
products P (ψ1)

d0,d1
(1/2) of section 2, which would obviate the need to sieve altogether.

The second method would be preferable, but the first is of great interest in its
own right. A recent illustration of the utility of the method of multiple Dirichlet
series in working over number fields is given by J. Li [11] in his thesis, where the
original result of Luo and Ramakrishnan is extended to forms on GL2(AK), for K
an arbitrary number field. Such a result does not appear to be accessible by the
method of the approximate functional equation and large sieve.

In section 2, we review some of the results of Bump-Friedberg-Hoffstein [2] and
construct the relevant double Dirichlet series. In section 3 we indicate how to sieve
the double Dirichlet series of the previous section in order to obtain a series summed
over only square-free discriminants d. In the final two sections we prove the main
theorem.

The authors thank S. Friedberg and J. Hoffstein for their encouragement and
comments on an earlier version of this paper. We also thank D. Bump, D. Ginzburg,
J. Hundley, D. Jiang and Y. Tian for their advice. Finally, we are grateful to the
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referee and editor for several comments improving the overall exposition of the
paper.

2. Analytic Continuation of a Double Dirichlet Series

Let π be a cuspidal automorphic representation of GL3(AQ) of conductor N. Let
S be a finite set of places of Q including 2 and the archimedean place, such that π
is unramified outside of S. We write S as the disjoint union S = Sfin ∪ {∞}. Let
M =

∏
p∈Sfin

p. Let R = (Z/4MZ)×⊗Z/2Z. Characters in the dual group R̂ will be

used to sieve out congruence classes. We note that characters in R̂ are precisely the
quadratic characters of (Z/4MZ)×. For the purposes of constructing L-functions
below, we identify a character in R̂ with the primitive quadratic Dirichlet character
which induces it. Thus, given a divisor l of 4M, there is exactly one character in R̂
of conductor l if 8 does not divide l, and exactly two characters in R̂ of conductor
l if 8 does divide l.

We recall that LS and LS were defined in the remark following the statement
of Theorem 1.1. Taking out the archimedean component from the L-function of π,
we have the L-series

L∞(s, π) =
∑
m≥1

cmm
−s

=
∏
p

(
1− αp

ps

)−1(
1− βp

ps

)−1(
1− γp

ps

)−1

,

the Euler product being taken over all primes p of Q. For χ a Dirichlet character
of conductor D relatively prime to M the twisted L-series

L∞(s, π ⊗ χ) =
∑
m≥1

cmχ(m)
ms

=
∏
p

(
1− αpχ(p)

ps

)−1(
1− βpχ(p)

ps

)−1(
1− γpχ(p)

ps

)−1

,

has a functional equation given by

L∞(s, π ⊗ χ) = επτ(χ)3χπ(D)χ(N)(D3N)
1
2−s

L∞(1− s, π̃ ⊗ χ̄)
L∞(s, π ⊗ χ)

L∞(1− s, π̃ ⊗ χ̄).

Here χπ is the central character of π, τ(χ) is the normalized Gauss sum associated
to χ and επ = ε(1/2, π) is the central value of the ε-factor of π. From now on we
will assume that π is self-contragedient with trivial central character and that χ is
quadratic. In this case, τ(χ) is trivial.

In [2], a double Dirichlet series is constructed out of quadratic twists of the
L-function of π. To describe this precisely we need some more notation. Let χd
denote the quadratic Dirichlet character associated to the extension Q(

√
d) of Q.

For ψ1, ψ2 in R̂, it is shown that there exist finite Euler products P (ψ1)
d0,d1

(s) such
that the double Dirichlet series

(2.1) ZM (s, w, π;ψ2, ψ1) =
∑

(d,M)=1

LS(s, π ⊗ χd0ψ1)
dw

ψ2(d0)P
(ψ1)
d0,d1

(s)
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has a meromorphic continuation to C2. The sum is taken over positive integers
d = d0d

2
1, with d0 squarefree. In fact

Theorem 2.1. Let

P(s, w) = w(w − 1)(3s+ w − 5/2)(3s+ w − 3/2).

Then P(s, w)ZM (s, w, π;ψ2, ψ1) has an analytic continuation to an entire function
of order 1 on C2.

This series has a polar line at w = 1 if and only if ψ2 = 1. In this case, for
<(s) > 1/2, the residue at w = 1 is computed in [2]

(2.2) Res
w=1

ZM (s, w, π; 1, 1) =
∏
p|M

(1− 1/p) · LS(2s, π, sym2)ζS(6s− 1).

Moreover, the series satisfies certain functional equations as s 7→ 1 − s and w 7→
1− w, [2]. These are reviewed in the following section.

For our application we need to consider slightly different sums. For a prime
number r relatively prime to M, let χ̃r denote the quadratic character with con-
ductor r defined by χ̃r(∗) = (∗r ). Let K be the set of all positive integers d such
that ψ(d) = 1 for all ψ ∈ R̂.

For (d,M) = 1 we have the orthogonality relation

(2.3)
1
|R̂|

∑
ψ∈R̂

ψ(d) =
{

1 if d ∈ K
0 otherwise.

We let δK be the characteristic function of the subset K, and define

Z(s, w, π; χ̃rδK, ψ1) :=
∑
d∈K

L∞(s, π ⊗ χd0ψ1)
dw

χ̃r(d)P
(ψ1)
d0,d1

(s).

Proposition 2.2. The double Dirichlet series Z(s, w, π; χ̃rδK, ψ1) has a meromor-
phic continuation to <(s) > 2/5 and w ∈ C. In this region, the product

P(s, w)Z(s, w, π; χ̃rδK, ψ1)

is analytic.

Proof. We express Z(s, w, π; χ̃rδK, ψ1) as a linear combination of the functions
ZM (s, w, π;ψ2, ψ1) defined above. Then the stated meromorphic continuation will
follow from the known properties of the ZM (s, w, π;ψ2, ψ1). Note that for d ∈ K
and p ∈ S, we have χd(p) = 1. Hence, for <(s),<(w) sufficiently large,

Z(s, w, π; χ̃rδK, ψ1) =

1
|R̂|

LSfin
(s, π ⊗ ψ1)

∑
ψ2∈R̂

∑
(d,M)=1

LS(s, π ⊗ χd0ψ1)
dw

χ̃r(d)ψ2(d)P
(ψ1)
d0,d1

(s),

where we have used the orthogonality relation (2.3). Removing the rth-term from
the Euler product of LS(s, π ⊗ χdψ1) and letting Sr = S ∪ {r}, we write the inner
sum over d as

∑
(d,rM)=1

LSr (s, π ⊗ χd0ψ1)
dw

∑
k≥0

crk(χd0ψ1)(rk)
rks

 χ̃r(d)ψ2(d)P
(ψ1)
d0,d1

(s)

= ψ1(r)L1,r(s) · ZMr(s, w, π;ψ2, ψ1) + L2,r(s) · ZMr(s, w, π;ψ2χ̃r, ψ1),
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say, where

L1,r(s) =
∑
k≥0

cr2k+1

r(2k+1)s
, L2,r(s) =

∑
k≥0

cr2k

r2ks
.

Thus Z(s, w, π; χ̃rδK, ψ1) =

(2.4)
1
|R̂|

LSfin
(s, π ⊗ ψ1)

∑
ψ2∈R̂

(ψ1(r)L1,r(s) · ZMr(s, w, π;ψ2, ψ1)+

L2,r(s)ZMr(s, w, π;ψ2χ̃r, ψ1)).

To complete the proof of the Proposition, it remains to establish the analytic con-
tinuation of Li,r(s), (i = 1, 2) to <(s) > 2/5. This is done in the Lemma below. �

Lemma 2.3. The series Li,r(s), (i = 1, 2) converge absolutely for <(s) > 2/5.
Moreover, we have the explicit representations

L1,r(s) =
cr + r−2s

rs(1− α2
rr
−2s)(1− β2

rr
−2s)(1− γ2

rr
−2s)

and

L2,r(s) =
1 + crr

−2s

(1− α2
rr
−2s)(1− β2

rr
−2s)(1− γ2

rr
−2s)

.

Proof. The absolute convergence of both series follows from the bound of Luo,
Rudnick and Sarnak [13]:

cn �ε n
2
5+ε,

for any ε > 0. To evaluate the sum L1,r(s), we begin by writing the Fourier coeffi-
cient crk in terms of the Satake parameters α = αr, β = βr, γ = γr :

crk =

∣∣∣∣∣∣
αk+2 βk+2 γk+2

α β γ
1 1 1

∣∣∣∣∣∣∣∣∣∣∣∣
α2 β2 γ2

α β γ
1 1 1

∣∣∣∣∣∣
.

We expand the determinants and evaluate the sum Li,r(s) as a linear combination
of geometric series. After some algebraic simplifications using the relations

cr = α+ β + γ = αβ + αγ + βγ

we arrive at the desired result. �

Remark The products in the denominator can be similarly evaluated to give
rational expressions of cr:

(1− α2
rr
−2s)(1− β2

rr
−2s)(1− γ2

rr
−2s) =

1− c2r − 2cr
r2s

+
c2r − 2cr
r4s

− 1
r6s

.(2.5)
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3. Sieving the double Dirichlet series

In this section we show that the “imperfect” double Dirichlet series without
weighting polynomials P (ψ1)

d0,d1
(s) has a meromorphic continuation to suitably large

domain.

Proposition 3.1. The series

Z[(s, w, π; χ̃rδK, 1) =
∑

d0∈K,d0 sq.free
d0>0

L∞(s, π ⊗ χd0)
dw0

χ̃r(d0)

has a meromorphic continuation to a tube domain in C2 containing the point
(s, w) = (1/2, 1). More precisely, the product

P(s, w)Z(s, w, π; χ̃rδK, 1)

is analytic in the union of the two regions

{<(s) > 1
2 ,<(w) > 119

124} and {0 ≤ <(s) ≤ 1
2 ,<(w) > − 191

62 <(s) + 5
2}.

The proposition is proved by a sieving argument similar to that used in [3].
We assume familiarity with the methods of [3] and merely indicate in this section
where modifications are needed. What makes the argument more difficult in our
situation is the lack of a sufficiently powerful “Lindelöf-on-average” result for the
mean square of twisted central values of the L-function of a GL3 cuspform. The
best that one can presently do is

Lemma 3.2. Let π be a self-adjoint cuspidal automorphic representation of GLr(AQ).
For all ε > 0, we have the estimate∑

|d|<x

|L( 1
2 , π ⊗ χd)|2 �ε x

r
2+ε.

This Lemma follows readily from the following character sum estimate of Heath-
Brown’s [6].

Lemma 3.3. Let N, Q be positive integers, and let a1, a2, . . . , aN be arbitrary
complex numbers. Then, for any ε > 0,

∑
|d|≤Q

∣∣∣∣∣∣
∑
n≤N

an χd(n)

∣∣∣∣∣∣
2

�ε (QN)ε(Q+N)
∑

n1,n2≤N
n1·n2=2

| an1an2 | .

It is for this reason that we are forced to assume that the base field is Q. It would
be of interest to establish an analogue of the Lemma over an arbitrary base field.
With Lemma 3.2 in hand, what is needed for the sieving is the modified version of
Proposition 4.12 of [3] given below.

Proposition 3.4. Let w = ν + it. Let ε > 0,−ε − 1
4 ≤ ν. Let ψ1, ψ2 ∈ R̂. We

will denote the conductor of ψi ∈ R̂ by li. The function ZM (1/2, w, π;ψ2, ψ1) is an
analytic function of w, except for possible poles at w = 3

4 and w = 1. If (l1, l2) =
1, 2, 4 or 8 and |t| > 1, then it satisfies the upper bounds

ZM

(
1
2
, ν + it, π;ψ2, ψ1

)
�ε M

ε,
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for 5
4 + ε < ν, and

(3.1) ZM

(
1
2
,−1

4
− ε+ it, π;ψ2, ψ1

)
�ε, π, t M

5+v(ε)
∑
ψ3∈R̂

∑
d0 sq. free

(d0,M)=1

∣∣L( 1
2 , π ⊗ χd0ψ3

)∣∣
d

5
4+ε
0 l

1
4
3

.

The function v(ε) is computable and satisfies v(ε) → 0 as ε→ 0.

Proof. The fact that this function is analytic in w, except for possible poles at
w = 3

4 and w = 1, is proved in [2] and [3].
To prove the first estimate, fix x > 1. Then,∑
d<x

(d,M)=1

LS( 1
2 , π ⊗ χd0ψ1)
dν+it

ψ2(d0)P
(ψ1)
d0,d1

( 1
2 )

�ε M
ε

∑
d0<x, d0 sq.free

(d0,M)=1

|L( 1
2 , π ⊗ χd0ψ1)|

dν0

∑
d21<

x
d0

(d1,M)=1

|P (ψ1)
d0,d1

( 1
2 )|

d2ν
1

�ε M
ε

∑
d0<x, d0 sq.free

(d0,M)=1

|L( 1
2 , π ⊗ χd0ψ1)|

dν0

∞∑
d1=1

(d1,M)=1

|P (ψ1)
d0,d1

( 1
2 )|

d2ν
1

,

where the last inner sum is absolutely convergent for ν > 5
4 , and it is � 1 indepen-

dent of d0 and M. It follows that

ZM ( 1
2 , ν + it, π;ψ2, ψ1) �ε, ν M

ε
∑

d0 sq.free

(d0,M)=1

|L( 1
2 , π ⊗ χd0ψ1)|

dν0
(ν > 5

4 ).(3.2)

The absolute convergence of the series in the right hand side, for ν > 5/4, can
be easily justified by applying the Cauchy-Schwarz inequality and the estimate in
Lemma 3.2.

To justify (3.1) we define two involutions on C2 :

α : (s, w) → (1− s, 3s+ w − 3
2 ) and β : (s, w) → (s+ w − 1

2 , 1− w).

If ~ZM (s, w, π) denotes the column vector whose entries are ZM (s, w, π;ψ2, ψ1) with
ψ1, ψ2 ∈ R̂, then by Propositions 4.2 and 4.3 in [3], there exist matrices ΨM (s) and
ΦM (w) such that
~ZM (s, w, π) = ΨM (s) · ~ZM (α(s, w), π) ~ZM (s, w, π) = ΦM (w) · ~ZM (β(s, w), π).

Applying the transformation βαβαβ, one obtains the functional equation:
~ZM (s, w, π) = M(s, w) · ~ZM (s, 5

2 − 3s− w, π),

where

M(s, w) := ΦM (w)ΨM (s+w− 1
2 )ΦM (3s+2w− 2)ΨM (2s+w− 1)ΦM (3s+w− 3

2 ).

We shall need to estimate the entries of the matrix M( 1
2 ,−

1
4 +it). To do this, we

recall the explicit description of, for instance, the β–functional equation (see (4.18)
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in [3]). We continue to let li denote the conductor of ψi ∈ R̂. If the conductor l2 of
ψ2 is odd, we have

(3.3)
∏

p|(M/l2)

(
1− p−2+2w

)
· ZM (s, w, π;ψ2, ψ1)

=
1
2
l
1
2−w
2 ·

∑
l3,l4|(M/l2)

µ(l3)ψ2(l3l4)l−w3 l−1+w
4 ·

∑
a=±1

L∞(1− w,χaψ2)
L∞(w,χaψ2)

· (ZM (β(s, w), π;ψ2, ψ1ψ3ψ4) + aZM (β(s, w), π;ψ2, χ−1ψ1ψ3ψ4)).

Here χ1 ≡ 1, and χ−1 is the character defined by

χ−1(m) =
(
−4
m

)
=

{
(−1)

|m|−1
2 +

sgn(m)−1
2 if m ≡ 1 (mod 2)

0 if m ≡ 0 (mod 2).

When l2 is even, we have a similar expression. In fact, just the behavior at the
finite place 2 changes.

Using Stirling’s formula, we obtain the estimate

(3.4)
∏

p|(M/l2)

(
1− p−2+2<(w)

)
· ZM (s, w, π;ψ2, ψ1)

�w l
1
2−<(w)
2 ·

∑
l3,l4|(M/l2)

l
−<(w)
3 l

−1+<(w)
4 · |ZM (β(s, w), π;ψ2, ψ1ψ3ψ4)| .

A similar estimate corresponding to the α–functional equation can also be es-
tablished:

(3.5)

ZM (s, w, π;ψ2, ψ1) ·
∏

p|(M/l1)

(
1−|αp|2 p−2+2s

)
(1−|βp|2 p−2+2s

)
(1−|γp|2 p−2+2s

)
�s l

3
2−3<(s)
1 ·

∑
lα|(M/l1)

|αlα | l−<(s)
α ·

∑
lβ |(M/l1)

|βlβ | l
−<(s)
β

·
∑

lγ |(M/l1)

|γlγ | l−<(s)
γ ·

∑
lα̃|(M/l1)

|αlα̃ | l
−1+<(s)
α̃

·
∑

lβ̃ |(M/l1)

|βlβ̃ | l
−1+<(s)

β̃
·
∑

lγ̃ |(M/l1)

|γlγ̃ | l
−1+<(s)
γ̃

· |ZM (α(s, w), π;ψ2ψαψβψγψα̃ψβ̃ψγ̃ , ψ1)|

where we have set

(3.6) αlα =
∏

p|lα
αp, βlβ =

∏
p|lβ

βp, γlγ =
∏

p|lγ
γp,

and similarly for αlα̃ , βlβ̃ , γlγ̃ .
The functional equations are more cleanly expressed in matrix notation. We

will see that the corresponding matrices representing the right hand sides of the
estimates (3.4) and (3.5) decompose as tensor products over the primes dividing
M. To this end, write 4M = M0M1, where M0 is a power of 2 and M1 is odd and
square-free. For the proof of Proposition 3.4, we need to bound ZM in terms of M.
Because of the tensor product structure we will exhibit, we will see that the bounds
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we obtain are multiplicative in M. For this reason, we may ignore a finite number
of primes (e.g. the prime 2) and we may assume M1 is prime.

Under these simplifications, if M1 = p is prime, we fix

~Zp(s, w, π) =


Zp(s, w, π; 1, 1)
Zp(s, w, π; 1, ψ)
Zp(s, w, π;ψ, 1)
Zp(s, w, π;ψ,ψ)

 ,

where ψ = χp is the character associated to the quadratic extension Q(
√
p′) of Q,

where p′ = (−1)
p−1
2 p. We now define two matrices which will be used to build up

the matrices which represent the right hand sides of the estimates (3.4) and (3.5)
for the β and α–functional equations, respectively. Let

Φ′p(w) =


1+p−1

1−p−2+2w
p−w+p−1+w

1−p−2+2w 0 0
p−w+p−1+w

1−p−2+2w
1+p−1

1−p−2+2w 0 0
0 0 p

1
2−w 0

0 0 0 p
1
2−w



Ψ′
p(s) =


u(s) 0 v(s) 0
0 p

3
2−3s 0 0

v(s) 0 u(s) 0
0 0 0 p

3
2−3s

 ,

where u(s) and v(s) are given by

u(s) =
∗

(1− |αp|2 p−2+2s)(1− |βp|2 p−2+2s)(1− |γp|2 p−2+2s)
,

v(s) =
∗∗

(1− |αp|2 p−2+2s)(1− |βp|2 p−2+2s)(1− |γp|2 p−2+2s)

with

∗ =
[
1 + (|αp|−1 + |βp|−1 + |γp|−1)p−2+2s + (|αp|+ |βp|+ |γp|)2p−1

+ (|αp|+ |βp|+ |γp|)p−3+2s + (|αp|−1 + |βp|−1 + |γp|−1)p−2s

+ (|αp|−1 + |βp|−1 + |γp|−1)2p−2 + (|αp|+ |βp|+ |γp|)p−1−2s + p−3
]

and

∗∗ =
[
(|αp|+ |βp|+ |γp|)p−1+s + p−3+3s + (|αp|+ |βp|+ |γp|)p−s

+ (|αp|+ |βp|+ |γp|)(|αp|−1 + |βp|−1 + |γp|−1)p−2+s

+ (|αp|+ |βp|+ |γp|)(|αp|−1 + |βp|−1 + |γp|−1)p−1−s

+ (|αp|−1 + |βp|−1 + |γp|−1)p−3+s + (|αp|−1 + |βp|−1 + |γp|−1)p−2−s + p−3s
]
.

(We digress a moment to explain the apparent asymmetry in considering only
the quadratic extensions Q(

√
p′). The characters corresponding to the extensions

Q(
√
−p′) will appear after we tensor with the matrices corresponding to the prime

2. These 16 × 16 matrices act on the 16-dimensional vector whose components
are Z2(s, w, π;ψ1, ψ2), with ψ1 and ψ2 each being one of the 4 primitive quadratic
characters of conductor a power of 2. Fortunately, we will not need to write down
these matrices as we are only interested in bounds for ZM in terms ofM, asM grows
large. Therefore, as remarked above, we can ignore finitely many small primes.)
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For M1 odd and square-free, one can compute upper bounds for the matrices
ΨM1(s) and ΦM1(w) as follows. Let p be a prime divisor of M1, and let Vp be a
complex vector space spanned by a basis

{ep(l2, l1) : l1, l2|p}.

We consider two additional complex vector spaces V αp and V βp spanned by

{eαp (l2, l1) : l1, l2|p} {eβp (l2, l1) : l1, l2|p},

respectively, and let

Ψ′
p : Vp −→ V αp Φ′p : Vp −→ V βp

be the linear maps corresponding to Ψ′
p(s) and Φ′p(w). For instance, Φ′p is described

by

ep(l2, l1) 7→
∏

q|(p/l2)
q 6=1

(
1− q−2+2w

)−1 · l
1
2−w
2 ·

∑
l3,l4|(p/l2)

l−w3 l−1+w
4 · eβp (l2, l1l3l4).

Here, we made the convention that eβp (a, n
2b) = eβp (a, b).

Let

VM1 :=
⊗

p|M1
Vp ; V αM1

:=
⊗

p|M1
V αp ; V βM1

:=
⊗

p|M1
V βp .

Then, Ψ′
M1

=
⊗

p|M1
Ψ′
p and Φ′M1

=
⊗

p|M1
Φ′p.

Now, for M1 = p, we have

ΦM1(− 1
4 ) � Φ′M1

(− 1
4 ) ∼


1 p

1
4 0 0

p
1
4 1 0 0
0 0 p

3
4 0

0 0 0 p
3
4

 ,

ΨM1(− 1
4 ) � Ψ′

M1
(− 1

4 ) ∼


c′pp

1
2 0 p

3
4 0

0 p
9
4 0 0

p
3
4 0 c′pp

1
2 0

0 0 0 p
9
4

 ,

and

ΦM1(−1) � Φ′M1
(−1) ∼


1 p 0 0
p 1 0 0
0 0 p

3
2 0

0 0 0 p
3
2

 as p→∞,

where
c′p := |αp|−1 + |βp|−1 + |γp|−1.

Recall that by the remark (2) made after the statement of Theorem 1.1, the cuspidal
automorphic representation π is a Gelbart-Jacquet lift. It follows that

c′p � p
2
9

by the bound of Kim and Shahidi in [9]. In fact, the weaker exponent 5/28 obtained
by Bump, Duke, Hoffstein and Iwaniec in [1] would suffice for our purposes. It
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follows easily that

M( 1
2 ,−

1
4 ) �


p5 p

19
4 p5 0

p
19
4 p

9
2 p

19
4 0

p5 p
19
4 p

40
9 0

0 0 0 p
15
2

 .

To prove (3.1) consider the first three entries of ~Zp(s, w, π). Recall that in the
statement of the proposition, we have the condition (l1, l2) = 1, 2, 4 or 8. For
example, we have that

|Zp( 1
2 ,− 1

4 − ε+ it, π; 1, 1)| � pv(ε) · (p5|Zp( 1
2 ,

5
4 + ε− it, π; 1, 1)|

+ p
19
4 |Zp( 1

2 ,
5
4 + ε− it, π; 1, ψ)|+ p5|Zp( 1

2 ,
5
4 + ε− it, π;ψ, 1)|).

The factor v(ε) is a linear function of ε coming from repeated applications of the
functional equations. For example, when w = −1/4 − ε and M1 = p is prime, the
estimate (3.4) would produce a pε.

For general M, we can use the tensor product decomposition of ΨM and ΦM
obtaining

|ZM ( 1
2 ,− 1

4 − ε+ it, π;ψ2, ψ1)|

�Mv(ε)
∑

ψ3,ψ4∈R̂
(l3, l4)=1

M5l
− 1

4
3 |ZM ( 1

2 ,
5
4 + ε− it, π;ψ4, ψ3)|.

Now, the estimate (3.1) follows immediately from (3.2). �

To conclude the section, we now prove Proposition 3.1. We have

Z[(s, w, π; χ̃rδK, 1) =
∑

d0∈K,d0 sq.free
d0>0

L∞(s, π ⊗ χd0)
dw0

χ̃r(d0).

As in the proof of Proposition 2.2, we can express Z[(s, w, π; χ̃rδK, 1) as a finite
linear combination of the series

Z[Mr(s, w, π;ψ2, 1) =
∑

(d0,Mr)=1

d0 sq.free

LS(s, π ⊗ χd0)
dw

ψ2(d0)

Since r will be fixed for the rest of the section, we relabel Mr as M ′. We now
indicate how to analytically continue Z[M ′(s, w, π;ψ2, 1) to a region containing the
point (1/2, 1).

First, we write

Z[M ′(s, w, π;ψ2, 1) =
∑

(q,M ′)=1

µ(q)ZM ′(s, w, π;ψ2, 1; q),

where the sum is over square-free q and

ZM ′(s, w, π;ψ2, 1; q) :=
∑

(d0d1,M ′)=1

d1≡0 (q)

LS(s, π ⊗ χd0)
dw

ψ2(d0)Pd0,d1(s).
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In [2] an explicit description of the weighting polynomials Pd0,d1(s) is given. We
need an estimate in the q–aspect for ZM ′( 1

2 , w, π;ψ2, 1; q) in a strip − 1
4−ε < <(w) <

5
4 + ε with a small ε > 0. From the computations of [2], we know that

Pd0,d1(s) =
∏
pl||d1

Pd0,pl(s)

and, for p prime, we have the following bound independent of d0

∞∑
l=0

Pd0,pl(s)
pls

= 1 + p−2<(w)O

(
|c(2)p |+ |cp|
p2<(s)−1

+ 1

)
where c(2)p are the coefficients of L(s, π, sym2). Therefore for <(w) > 5/4 and <(s) ≥
1/2, we have

ZM ′(s, w, π;ψ2, 1; q) � q−2<(w) · ((|c(2)q |+ |cq|) q1−2<(s) + 1).

To obtain an estimate for <(w) < −1/4 and <(s) ≥ 1/2, we write

(3.7) ZM ′(s, w, π;ψ2, 1; q) =
∑
l|q

µ(l)Z(l)
M ′(s, w, π;ψ2, 1),

where

Z
(l)
M ′(s, w, π;ψ2, 1) :=

∑
(d0,M ′)=1

(d1,M ′l)=1

LS(s, π ⊗ χd0)
dw

ψ2(d0)Pd0,d1(s).

The point is that one can decompose Z(l)
M ′ as a linear combination of the functions

ZM ′(s, w, π;ψ2, ψ1).

Proposition 3.5. We have

(3.8) Z
(l)
M ′(s, w, π;ψ2, 1) ·

∏
p|l

(
1−

α2
p

p2s

)(
1−

β2
p

p2s

)(
1−

γ2
p

p2s

)
=

1
2

∑
l3|l

1
lw3

∏
p|l3

(
1−

α2
p

p2s

)(
1−

β2
p

p2s

)(
1−

γ2
p

p2s

)
·

∑
m1,m2,m3|(l/l3)

χl3(m1m2m3)αm1βm2γm3

(m1m2m3)s

× [ZM ′l(s, w, π;ψ2χm1m2m3 , χl3) + ZM ′l(s, w, π;ψ2χ−m1m2m3 , χl3)

+ χ−1(m1m2m3)ZM ′l(s, w, π;ψ2χm1m2m3 , χl3)

− χ−1(m1m2m3)ZM ′l(s, w, π;ψ2χ−m1m2m3 , χl3)] .

We recall that αm, βm and γm were defined in (3.6). The proof is similar to that
of Proposition 4.14 of [3] and will be omitted.

Applying Proposition 3.4, it follows that, for <(w) < −1/4,

Z
(l)
M ′( 1

2 , w, π;ψ2, 1) � (M ′q)
21
4 +ε

∑
ψ3∈R̂q

∑
d0 sq. free

∣∣L( 1
2 , π ⊗ χd0ψ3

)∣∣
d
1−<(w)
0 l

1
4
3

,

where R̂q is the dual of Rq = (Z/4M ′qZ)× ⊗ Z/2Z and l3 is the conductor of ψ3.
Clearly, the same estimate holds for ZM ′( 1

2 , w, π;ψ2, 1; q).
We now use the Phragmen-Lindelöf principle on the holomorphic function

P(s, w)ZM ′( 1
2 , w, π;ψ2, 1; q).
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Since Proposition 3.5 and (3.7) allow us to express ZM ′( 1
2 , w, π;ψ2, 1; q) as a finite

linear combination of the ZM ′ ’s, the fact that the above product is holomorphic and
of order 1 follows from Theorem 2.1. Therefore we may apply Phragmen-Lindelöf
and obtain the estimate

(3.9) ZM ′( 1
2 , w, π;ψ2, 1; q) � (|c(2)q |+ |cq|+ 1) · q 95

24−
31
6 <(w)+v(ε)

·
∑
ψ3∈R̂q

∑
d0 sq. free

∣∣L( 1
2 , π ⊗ χd0ψ3

)∣∣
d

5
4+ε
0 l

1
4
3

,

for − 1
4 − ε < <(w) < 5

4 + ε. Here v(ε) → 0 as ε→ 0.
Using the above estimate, it follows that

Z[M ′( 1
2 , w, π;ψ2, 1) =

∑
(q,M ′)=1

µ(q)ZM ′( 1
2 , w, π;ψ2, 1; q)

is absolutely bounded by the sum of the three series

Σ1 + Σ2 + Σ3,

where, for instance,

Σ1 =
∑

q sq. free

(q,M ′)=1

|c(2)q | q 95
24−

31
6 <(w)+v(ε) ·

∑
ψ3∈R̂q

∑
d0 sq. free

∣∣L( 1
2 , π ⊗ χd0ψ3

)∣∣
d

5
4+ε
0 l

1
4
3

.

Each of these sums may be bounded in the same way. As Σ1 is the most difficult
to bound, we provide details in this case only.

We decompose l3 = l1l2 with l1|4M ′ and l2|q. If we write q = l2n, then

Σ1 �
∑
l1|4M ′

∑
l2 sq. free

(l2,M ′)=1

∑
d0 sq. free

∣∣L( 1
2 , π ⊗ χd0χl1χl2

)∣∣ · |c(2)l2 |
d

5
4+ε
0 l

1
4
1 l

31
6 <(w)− 89

24−v(ε)
2

∑
n≥1

|c(2)n |
n

31
6 <(w)− 95

24−v(ε)
.

Fix any ν0 > 119
124 . Note that

31
6
ν0 −

95
24

> 1.

Since by the work of Kim [8] and Kim-Shahidi [10], sym2(π) is automorphic (recall
that π is a Gelbart-Jacquet lift), it follows that, for <(w) > ν0 and ε sufficiently
small, the innermost sum is absolutely convergent. Therefore,

Σ1 �
∑
l1|4M ′

∑
l2 sq. free

(l2,M ′)=1

∑
d0 sq. free

∣∣L( 1
2 , π ⊗ χd0χl1χl2

)∣∣ · |c(2)l2 |
d

5
4+ε
0 l

1
4
1 l

31
6 <(w)− 89

24−v(ε)
2

.

Now, write d0 = dd1 and l2 = dl0 with (d1, l0) = 1. Introducing the Euler factors
corresponding to the primes dividing d, and then summing over d, we are reduced
to estimating ∑

l1|4M ′

∑
(l0,d1)=1

(l0,M ′)=1

∣∣L( 1
2 , π ⊗ χd1χl1χl0

)∣∣ · |c(2)l0 |
d

5
4+ε
1 l

1
4
1 l

31
6 <(w)− 89

24−v(ε)
0

.
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Let νw := min{ 5
4 + ε, 31

6 <(w) − 89
24 − v(ε)} (<(w) > ν0). Note that νw > 5

4 for ε
sufficiently small. Then, for fixed l1, we have∑

(l0,d1)=1

(l0,M ′)=1

∣∣L( 1
2 , π ⊗ χd1χl1χl0

)∣∣ · |c(2)l0 |
(d1l0)νw

�
∑

m sq. free

am
∣∣L( 1

2 , π ⊗ χmχl1
)∣∣

mνw
,

where am =
∑
l0|m |c

(2)
l0
|. To see that this final series is absolutely convergent, it

suffices by the Cauchy-Schwartz inequality to establish that the two series∑
m sq. free

a2
m

m1+δ

and ∑
m sq. free

∣∣L( 1
2 , π ⊗ χmχl1

)∣∣2
m3/2+δ

are absolutely convergent for any δ > 0. The convergence of the first follows from
properties of the Rankin-Selberg L-function of sym2(π) with itself, and the conver-
gence of the second from Lemma 3.2.

This establishes the analytic continuation of Z[(s, w, π; χ̃rδK, 1) to

(3.10) {<(s) ≥ 1
2 ,<(w) > 119

124}.
To complete the proof of Proposition 3.1, we note that, because of the functional
equation, we have the bound

L(s, π ⊗ χd0) �ε |d0|3/2+ε

for <(s) = 0. Therefore, Z[(s, w, π; χ̃rδK, 1) is holomorphic in the tube domain

(3.11) {<(s) > 0,<(w) > 5
2}.

Applying Hartogs’ theorem [7] and taking the convex closure of the two tube do-
mains (3.10) and (3.11) completes the proof of Proposition 3.1.

4. Computing the residue

The series Z[(s, w, π; χ̃rδK, 1) has polar lines at w = 1 and at w+3s = 5/2 which
it inherits from Z(s, w, π; χ̃rδK, 1). Except for these two polar lines, Z[(s, w, π; χ̃rδK, 1)
is holomorphic in a neighborhood of the point (s, w) = (1/2, 1). The residue of
Z[(s, w, π; χ̃rδK, 1) at w = 1 may be computed from the known residue (2.2) of
the ZM (s, w, π; χ̃rδK, 1) and the explicit sieving procedure given in [3]. However,
with the meromorphic continuation of Z[(s, w, π; χ̃rδK, 1) already established in
Proposition 3.1, we shall compute the residue more directly.

We begin with the identity

Z[(s, w, π; χ̃rδK, 1) = LSfin
(s, π)

∑
d0∈K

d0 sq.free

LS(s, π ⊗ χd0)
dw0

χ̃r(d0).

Interchanging the order of summation, we rewrite the sum as∑
(n,M)=1

cn
ns

∑
d∈K

d sq.free

χd(n)χ̃r(d)
dw

.
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Set n = n0n
2
1n

2
2 where n0 squarefree and p|n1 =⇒ p|n0. We concentrate on the

inner sum: ∑
d∈K, sq.free

χd(n)χ̃r(d)
dw

=
∑

d∈K,d sq.free
(d,n2)=1

χd(n0)χ̃r(d)
|d|w

=
∑

d∈K, sq.free
(d,n2)=1

χn0(d)χr(d)
|d|w

by Quadratic Reciprocity, as d ≡ 1(4). We again use the orthogonality (2.3) to
conclude ∑

d∈K,d sq.free
(d,n2)=1

χn0(d)χr(d)
|d|w

=
1
|R̂|

∑
ψ∈R̂

L[Mn2
(w,χn0ψχr)

where

L[b(w,χ) =
∑

d sq.free

(d,b)=1

χ(d)
|d|w

.

The residue of these L-functions is easily computed:

Lemma 4.1. Let χ be a primitive quadratic Dirichlet character of conductor n and
let b > 0. Then ζ(2w)L[b(w,χ) can be meromorphically continued to <(w) > 0. It
is analytic in this region unless n = 1 when it has exactly one simple pole at w = 1
with residue

Res
w=1

ζ(2w)L[b(w,χ) =
∏
p|b

(
1 +

1
p

)−1

.

Since n0 and r are relatively prime to M, the L-function L[Mn2
(w,χn0ψχr) will

have a pole at w = 1 iff ψ = 1 and n = r2k+1n2
2, (r, n2) = 1.

Therefore, using Lemma 4.1,

Res
w=1

ζ(2w)
∑

(n,M)=1

cn
ns
L[Mn2

(w,χn0χr)


=

∑
(n2,Mr)=1

∞∑
k=0

cr2k+1n2
2

(r2k+1n2
2)s

∏
p|Mn2

(
1 +

1
p

)−1

=

[ ∞∑
k=0

cr2k+1

r(2k+1)s

] ∑
(n2,Mr)=1

cn2
2

n2s
2

∏
p|n2

(
1 +

1
p

)−1
∏
p|M

(
1 +

1
p

)−1

=
(

1 +
1
r

)
L1,r(s)

1
r + L2,r(s)

∏
p|M

(
1 +

1
p

)−1 ∑
(n2,M)=1

cn2
2

n2s
2

∏
p|n2

(
1 +

1
p

)−1

We refer the reader to Lemma 2.3 for the explicit evaluations of L1,r and L2,r.
Putting everything together, when r is a prime, (r,M) = 1,

Res
w=1

Z[(s, w, π; χ̃rδK, 1) = R1(s;π) ·Rr(s;π),
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where

R1(s;π) = LSfin
(s, π)

1
|R̂|

∏
p|M

(
1 +

1
p

)−1 ∑
(n2,M)=1

cn2
2

n2s
2

∏
p|n2

(
1 +

1
p

)−1

,

and

(4.1) Rr(s;π) =
(

1 +
1
r

)
L1r(s)

1
r + L2,r(s)

.

For r = 1 a similar argument yields

Res
w=1

Z[(s, w, π; δK, 1) = R1(s;π).

Next we note that R1(s;π) is well-approximated by the symmetric square L-
function for <(s) ≥ 1/2.

Proposition 4.2. We have

R1(s;π) = LS(2s, π, sym2)BM (s;π)

where BM (s;π) is an absolutely convergent Euler product for <(s) > 9/20.

Proof. The Dirichlet series in the definition of R1(s;π) has the Euler product rep-
resentation ∑

(n,M)=1

cn2

n2s

∏
p|n

(
1 +

1
p

)−1

=
∏

(p,M)=1

Qp(2s),

where

Qp(2s) = 1 +
p

p+ 1

∑
k≥1

cp2k

p2ks

=
∑
k≥0

cp2k

p2ks
− 1
p+ 1

∑
k≥1

cp2k

p2ks

= L2,p(s) +O(p−(2s+1/5−ε)).

On the other hand the symmetric square L-function has an Euler product

LS(s, π, sym2) =
∏

(p,M)=1

Tp(s),

where

Tp(s) =

(
1−

α2
p

ps

)−1(
1−

β2
p

ps

)−1(
1−

γ2
p

ps

)−1

(
1− αpβp

ps

)−1(
1− βpγp

ps

)−1(
1− γpαp

ps

)−1

Thus the quotient

L2,p(s)
Tp(2s)

=
(

1 +
cp
p2s

)(
1− αpβp

p2s

)(
1− βpγp

p2s

)(
1− γpαp

p2s

)
= 1 +O(p4/5−4s).

For the final bound we have again used the fact that, for π self-contragredient,

cp = αp + βp + γp = αpβp + αpγp + βpγp.
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Now, an infinite product ∏
p

(
1 +O(p4/5−4s)

)
will converge absolutely provided 4

5 − 4<(s) < −1, i.e. provided <(s) > 9/20. Thus

BM (s;π) =
∏

(p,M)=1

L2,p(s)
Tp(2s)

converges absolutely in this range. �

To proceed further we now use the assumption that LS(2s, π, sym2) has a simple
pole at s = 1/2. By virtue of the previous proposition, R1(s, π) has a simple pole
at s = 1

2 as well. We set

CM (π) = lim
s→1/2

(s− 1/2)R1(s;π).

As noted at the start of this section, the double Dirichlet series Z[(s, w, π; χ̃rδK, 1)
is analytic in a neighborhood of the point (s, w) = (1/2, 1) except for the two polar
lines

w = 1 and w + 3s = 5/2.

Hence near the point (1/2, 1) we have the expansion

Z[(s, w, π; χ̃rδK, 1) =
A0

(w − 1)(s− 1/2)
+
A1(s)
w − 1

+
A

′

0

(w + 3s− 5/2)(s− 1/2)
+

A
′

1(s)
(w + 3s− 5/2)

+H(s, w),(4.2)

where

A0 = lim
s→1/2

lim
w→1

(s− 1/2)(w − 1)Z[(s, w, π; χ̃rδK, 1)

A
′

0 = lim
s→1/2

lim
w→5/2−3s

(s− 1/2)(w + 3s− 5/2)Z[(s, w, π; χ̃rδK, 1),

and A1(s), A
′

1(s) and H(s, w) are analytic near (1/2, 1).
Fix w > 1 and let s → 1/2 in (4.2). The limit on the left hand side exists,

therefore we conclude that A0 = −A′

0. Hence at s = 1/2,

(4.3) Z[(1/2, w, π; χ̃rδK, 1) =
3A0

(w − 1)2
+

B1

w − 1
+ I(w),

for I(w) an analytic function in a neighborhood of w = 1. In conclusion

(4.4) A0 = A0(r;π) =
{
CM (π) if r = 1
CM (π)Rr(1/2;π) otherwise.

We note that Lemma 2.3 and (4.1) ensure thatRr(s;π) makes sense for <(s) > 9/20.
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5. Proof of Theorem 1.1

We are finally in a position to prove our main result. We assume π1 and π2 are
two self-contragredient cuspidal automorphic representations of GL3(AQ) of trivial
character and levels N1, N2 respectively. We suppose further that L(s, π1, sym

2)
has a simple pole at s = 1. Choose the finite set S to contain 2, the archimedean
place, and all the places of bad ramification of π1 and π2.

We assume there exists a nonzero constant κ such that

L(1/2, π1 ⊗ χd) = κL(1/2, π2 ⊗ χd)

for all positive squarefree integers d ∈ K. Let Z[(s, w, π1; χ̃rδK, 1) and Z[(s, w, π2; χ̃rδK, 1)
be the associated double Dirichlet series. Letting r = 1, we see

(w − 1)2Z[(1/2, w, π1; δK, 1) = 3CM (π1) +O(w − 1).

by (4.3) and (4.4). On the other hand,

(w−1)2Z[(1/2, w, π1; δK, 1) = κ(w−1)2Z[(1/2, w, π2; δK, 1) = 3κCM (π2)+O(w−1),

whence
CM (π1) = κCM (π2).

Similarly, if r is prime and (r,M) = 1,

3CM (π1)Rr(1/2;π1) +O(w − 1) = (w − 1)2Z[(1/2, w, π1; χ̃rδK, 1)

= κ(w − 1)2Z[(1/2, w, π2; χ̃rδK, 1)
= 3κCM (π2)Rr(1/2;π2) +O(w − 1),

as w → 1. Equivalently
Rr(1/2;π1) = Rr(1/2;π2).

Lemma 5.1. There exists a rational function hr(t) such that

hr(cr(π1)) = Rr(1/2;π1).

Moreover, the function hr(t) is monotone for r sufficiently large and |t| < r1−ε, for
any ε > 0.

Proof. Combining Lemma 2.3 with Eq. (4.1) and Eq. (2.5), we get

Rr(1/2;π1) = (r + 1)r3/2
rcr(π1) + 1

cr(π1)2(r − r2) + cr(π1)(r3 + 2r2 − 2r) + (r4 + r3 − 1)
.

Let hr(t) be the function defined by

hr(t) := (r + 1)r3/2
rt+ 1

t2(r − r2) + t(r3 + 2r2 − 2r) + (r4 + r3 − 1)
.

Note that

h′r(t) =
r5/2

(
r2 − 1

) (
−1 + r + 2 r2 + r3 + 2 t+ r t2

)
(−1 + r3 + r4 − 2 r t+ 2 r2 t+ r3 t+ r t2 − r2 t2)2

.

Fix ε > 0. If r is sufficiently large in terms of ε, the derivative is strictly positive
for |t| < r1−ε. Thus hr(t) is monotone for t in this range. �

To complete the proof of Theorem 1.1, we use Lemma 5.1 to conclude that if
Rr(1/2;π1) = Rr(1/2;π2), then cr(π1) = cr(π2) for all r sufficiently large. The
strong multiplicity one theorem now implies that π1 ' π2.
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