DETERMINATION OF A GL; CUSPFORM BY TWISTS OF
CENTRAL L-VALUES

GAUTAM CHINTA AND ADRIAN DIACONU

ABSTRACT. Let 7 be a self-contragredient cuspidal automorphic representa-
tions of GL3(Ag). We show that if the symmetric square L-function of 7 has a
pole at s = 1, then 7 is determined by central values of quadratic twists of its
L-function. That is, if 7/ is another cuspidal automorphic representations of
GL3(Ag) for which L(%7 TRX) = L(%, 7w’ ® x) for sufficiently many quadratic
characters x, then m ~ 7/,

1. INTRODUCTION

Let 7 be a self-contragredient cuspidal automorphic representation of GL3(Ag)
and x a Dirichlet character. Then the twisted L-function L(s, 7®Y) initially defined
for R(s) > 1, is known to have an analytic continuation to C and to satisfy a certain
functional equation relating the values at s to those at 1 — s. The main result of
this paper is that knowledge of these values at the central point s = 1/2 for twists
by quadratic Dirichlet characters,at least when the symmetric square L-function
L(s,w,sym?) has a pole at s = 1, is enough to determine 7. Precisely, we prove

Theorem 1.1. Let m and 7’ be two self-contragredient cuspidal automorphic rep-
resentations of GL3(Ag). Suppose that L(s,m, sym?) has a pole at s = 1. Fiz an
integer M and let X be the set of all quadratic Dirichlet characters of conductor
relatively prime to M. If there exists a nonzero constant K such that

(1.1) L, m@x) = kL3, &)

for all x € X, then m ~ 7',

Remarks

(1) The L-functions in (1.1) are the full automorphic L functions, including the
archimedean component. However, as will be clear from the proof of the
theorem in section 5, if S is any finite set of places of Q (possibly including
the infinite place), the conclusion of the theorem is still true if (1.1) is
replaced by

L(g,m@x) = kL5 (3,7’ ® x)
for all x € X. Here
L3(s,m) = H L(s,m,).
V€S
Later, we will also use the notation

Ls(s,m) = [ [ L(s, m).

vES
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(2) The condition L(s,,sym?) has a pole at s = 1 is satisfied when 7 is the
Gelbart-Jacquet lift [4] of an automorphic representation on G Lz (Ag) with
trivial central character. In fact, the converse is true as well. By the work of
Ginzburg-Rallis-Soudry (see e.g. [5]), for an irreducible cuspidal automor-
phic representation 7 of G L3 with the partial symmetric square L-function
LS (s, 7, sym?) having a pole at s = 1, there exists an irreducible cuspidal
automorphic representation o of Sps = SLs, which lifts functorially to 7.
We thank Dihua Jiang and David Ginzburg for clarifying this point for us.
This fact will make the sieving argument of section 3 somewhat easier.

For holomorphic newforms of congruence subgroups of SLs(Z), the analogous
result was proved by Luo and Ramakrishnan [12]. Their idea is to consider the
twisted averages of the form

> L(S, £ xa)xa(r)

d<X

and show that asymptotics for these expressions as X — oo involve the Hecke
eigenvalues of f. We prove our result by a similar method. However, the averaging
process for a GL3 cuspform is more delicate, and we use the method of double
Dirichlet series, rather than the method of the approximate functional equation
used in [12]. The double Dirichlet approach on GL3 was first carried out by Bump-
Friedberg-Hoffstein [2] and Diaconu-Goldfeld-Hoffstein [3]. We rely heavily on the
results of these papers.

As the base field is Q, it is likely that the method of the approximate functional
equation will work here as well. Our reason for using the multiple Dirichlet se-
ries approach is that it provides a considerably simpler framework and makes the
analysis quite easy. The extension to GL3(Ak) for K an arbitrary number field,
however, remains elusive from the point of view of both approaches.

One goal of this paper is to illustrate the source of this difficulty in our method.
The problem arises from the need to apply a “Lindel6f-on-average” bound (Lemma
3.2) to carry out the sieving process of section 3. We establish this bound by
appealing to a character sum estimate of Heath-Brown [6], which is valid only over
Q. There are two possible ways to solve this problem: first, establish Lemma 3.2 over
an arbitrary base field, or second, prove a “uniqueness” result for the finite Euler
products P;fﬁld)l (1/2) of section 2, which would obviate the need to sieve altogether.
The second method would be preferable, but the first is of great interest in its
own right. A recent illustration of the utility of the method of multiple Dirichlet
series in working over number fields is given by J. Li [11] in his thesis, where the
original result of Luo and Ramakrishnan is extended to forms on GLy(Af), for K
an arbitrary number field. Such a result does not appear to be accessible by the
method of the approximate functional equation and large sieve.

In section 2, we review some of the results of Bump-Friedberg-Hoffstein [2] and
construct the relevant double Dirichlet series. In section 3 we indicate how to sieve
the double Dirichlet series of the previous section in order to obtain a series summed
over only square-free discriminants d. In the final two sections we prove the main
theorem.

The authors thank S. Friedberg and J. Hoffstein for their encouragement and
comments on an earlier version of this paper. We also thank D. Bump, D. Ginzburg,
J. Hundley, D. Jiang and Y. Tian for their advice. Finally, we are grateful to the
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referee and editor for several comments improving the overall exposition of the
paper.

2. ANALYTIC CONTINUATION OF A DOUBLE DIRICHLET SERIES

Let 7 be a cuspidal automorphic representation of GL3(Ag) of conductor N. Let
S be a finite set of places of QQ including 2 and the archimedean place, such that m
is unramified outside of S. We write S as the disjoint union S = Sy, U {o0}. Let
M = Hpesfm p. Let R = (Z/4AMZ)* ®Z/27. Characters in the dual group R will be

used to sieve out congruence classes. We note that characters in R are precisely the
quadratic characters of (Z/4MZ)*. For the purposes of constructing L-functions
below, we identify a character in R with the primitive quadratic Dirichlet character
which induces it. Thus, given a divisor [ of 4M, there is exactly one character in R
of conductor [ if 8 does not divide [, and exactly two characters in R of conductor
[ if 8 does divide [.

We recall that L° and Lg were defined in the remark following the statement
of Theorem 1.1. Taking out the archimedean component from the L-function of m,
we have the L-series

L*>®(s,m) = E:Cmm_S

m>1

m(-3) () (3

p

the Euler product being taken over all primes p of Q. For x a Dirichlet character
of conductor D relatively prime to M the twisted L-series

L>®(s,mr®x) = Z emx(m)

ms
m>1

N NCoR

p

has a functional equation given by

%,SLoo(l —-$5,TRX)

L¥(s,m®x) = EwT(X)3Xw(D)X(N)(D3N) Loo(s,m® %)

L*(1—-s5,7®Y).
Here x is the central character of m, 7() is the normalized Gauss sum associated
to x and €, = €(1/2,7) is the central value of the e-factor of 7. From now on we
will assume that 7 is self-contragedient with trivial central character and that x is
quadratic. In this case, 7(x) is trivial.

In [2], a double Dirichlet series is constructed out of quadratic twists of the
L-function of 7. To describe this precisely we need some more notation. Let x4
denote the quadratic Dirichlet character associated to the extension Q(v/d) of Q.

For /1,1 in R, it is shown that there exist finite Euler products ch(?ii)l (s) such
that the double Dirichlet series

L5(s, ™ ® Xao¥1)
dw

(21)  Zu(s,w,mvs, )= Y. o (do) Py (5)

(d,M)=1
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has a meromorphic continuation to C2. The sum is taken over positive integers
d = dod?, with dy squarefree. In fact

Theorem 2.1. Let
P(s,w) =w(w—1)(3s +w — 5/2)(3s + w — 3/2).
Then P(s,w)Zn (s, w, m;12,11) has an analytic continuation to an entire function

of order 1 on C2.

This series has a polar line at w = 1 if and only if ¥ = 1. In this case, for
R(s) > 1/2, the residue at w = 1 is computed in [2]

(2.2) Res Zy(s,w,m1,1) = I @ =1/p)- L5(2s, 7, sym®)¢® (65 — 1).

" pIM
Moreover, the series satisfies certain functional equations as s — 1 — s and w —
1 —w, [2]. These are reviewed in the following section.

For our application we need to consider slightly different sums. For a prime
number r relatively prime to M, let x, denote the quadratic character with con-
ductor r defined by X,(x) = (%). Let KC be the set of all positive integers d such
that ¢ (d) = 1 for all ¢ € R.

For (d, M) = 1 we have the orthogonality relation

1 ifdek
(2:3) |R\ Z ¥(d { otherwise.
YER
We let dxc be the characteristic function of the subset K, and define
- L(s,m @ Xdp¥1) - 1
Z(&U/,T(;XT(;}C,'I,ZH) = Z dw . (d)Pé:ﬁdl( )

dek

Proposition 2.2. The double Dirichlet series Z(s,w,; X0k, ¥1) has a meromor-
phic continuation to R(s) > 2/5 and w € C. In this region, the product

P(Sa w)Z(S, w, T XrOK, 'l/}l)
is analytic.

Proof. We express Z(s,w,m; X»0k,%1) as a linear combination of the functions
Z (s, w, ;19,101 ) defined above. Then the stated meromorphic continuation will
follow from the known properties of the Zys(s,w,7;12,11). Note that for d € K
and p € S, we have x4(p) = 1. Hence, for £(s), R(w) sufficiently large,

Z<S7’U) Un )27“6/(:7 ¢1) =

;Lsfm sT®Y) Z T O Xa1) 3 (dn(a) R (9),

‘ | szR(d M)=

where we have used the orthogonality relation (2.3). Removing the r*"-term from
the Euler product of L% (s, ® x4t1) and letting S, = S U {r}, we write the inner
sum over d as

5 L5 (s,m & Xaoth1) 3 ¢ (Xao 1) (r") e (d)a(d) P (s)

dw ks do,d1
(d,rM)=1 k>0

= 1(r) L1, (5) - Zagr (s, w, 502, 91) + Lo () - Zar (5, w, 75 02X0r, 1),
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say, where

Cr2k+1 Cp2k
L1.n(s) = Z r2k+1)s’ Loy (s) = Z r2ks”
k>0 k>0

Thus Z(s, w, m; Xr0k, 1) =

(2.4) %Lsﬁ,xs, 7@ 01) 3 (Wr()Lan(s) - Zase(s,w,m5 o, ) +
Pa€R
LQ,T(S)ZMT(Sv w, 73 w2>2ra 7/}1))

To complete the proof of the Proposition, it remains to establish the analytic con-
tinuation of L; ,.(s), (i = 1,2) to R(s) > 2/5. This is done in the Lemma below. O

Lemma 2.3. The series L;,(s), (i = 1,2) converge absolutely for R(s) > 2/5.
Moreover, we have the explicit representations

cr + 1728
Ly, (s) =
b = ST - )
and
1+ ¢r28
Lo (s) =

(= a1 = B> (1= 2r )

Proof. The absolute convergence of both series follows from the bound of Luo,
Rudnick and Sarnak [13]:

2
e LensTe,

for any € > 0. To evaluate the sum L; ,-(s), we begin by writing the Fourier coeffi-
cient ¢.» in terms of the Satake parameters oo = o, 8 = Br, v = 7

Qb+ ghtz k2
a B Y
B 1 1 1
Crk = o2 B 2
a B v
1 1 1

We expand the determinants and evaluate the sum L; ,.(s) as a linear combination
of geometric series. After some algebraic simplifications using the relations

er=a+f+y=ab+ay+ 0y

we arrive at the desired result. O

Remark The products in the denominator can be similarly evaluated to give
rational expressions of c¢,.:
(1= a2 2)(1 = B 2)(1 -2 %) =
_63—2@ n c2 —2c, 1

(2'5) 1 r2s rds r6s’
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3. SIEVING THE DOUBLE DIRICHLET SERIES

In this section we show that the “imperfect” double Dirichlet series without
weighting polynomials Péf’j}l (s) has a meromorphic continuation to suitably large
domain.

Proposition 3.1. The series

. L>®(s,m™® Xdy) -
Z(s,w,m; Xr0k, 1) = > %Xr(dO)
do€K,dy sq.free 0
do>0

has a meromorphic continuation to a tube domain in C? containing the point
(s,w) = (1/2,1). More precisely, the product

P(S,U))Z(S,IU, 77;)27"6](:7 1)
is analytic in the union of the two regions
{R(s) > %,ﬂ?(w) > %} and {0 < R(s) < %,?R(w) > 7%3‘3(5) + g}

The proposition is proved by a sieving argument similar to that used in [3].
We assume familiarity with the methods of [3] and merely indicate in this section
where modifications are needed. What makes the argument more difficult in our
situation is the lack of a sufficiently powerful “Lindel6f-on-average” result for the
mean square of twisted central values of the L-function of a GL3 cuspform. The
best that one can presently do is

Lemma 3.2. Let w be a self-adjoint cuspidal automorphic representation of GL,(Ag).
For all € > 0, we have the estimate

S LG T xa) P ez
ld|<z

This Lemma follows readily from the following character sum estimate of Heath-
Brown’s [6].

Lemma 3.3. Let N, QQ be positive integers, and let ay, asz,...,an be arbitrary
complex numbers. Then, for any e > 0,
2

Z Zanxd(n) <e (QN)(Q+N) Z | Gy @ny |-

[d|<Q | n<N ni,n2<N
- ni-ne=0

It is for this reason that we are forced to assume that the base field is Q. It would
be of interest to establish an analogue of the Lemma over an arbitrary base field.
With Lemma 3.2 in hand, what is needed for the sieving is the modified version of
Proposition 4.12 of [3] given below.

Proposition 3.4. Let w = v + it. Let € > 0, —€ — i v. Let 1,19 € R. We

<
will denote the conductor of 1; € R by l;. The function Zpr(1/2,w,7;19,11) is an
analytic function of w, except for possible poles at w = % and w = 1. If (I1,13) =
1,2,4 or 8 and |t| > 1, then it satisfies the upper bounds

1
ZM (27I/+7;t,ﬂ';1/)2,1/11) <Le Mev
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f01"%—|—e<u7 and

1 1
(3.1) Zn (2,—4—6+it,ﬂ;¢2,¢1>

Comy MPFO S S |L (3.7 ® xanths)|

o
3R dosq.free do l3
(do,M)=1

The function v(e) is computable and satisfies v(e) — 0 as e — 0.

Proof. The fact that this function is analytic in w, except for possible poles at
w=2 and w = 1, is proved in [2] and [3].
To prove the first estimate, fix x > 1. Then,

S(1
> BBt g p) )

dl/+it do,d;
d<zx
(d,M)=1
e IL(3,7 ® Xath1)| |Pios (3)]
e Z v Z 2
do<z,dp sq.free 0 d%<% 1
(do, M)=1 (dy,M)=1
e LG m@xat)] o P (3)
e > & > —E
do<z,dg sq.free 0 di=1 1
(do,M)=1 (dl,M):l

where the last inner sum is absolutely convergent for v > %, and it is < 1 indepen-
dent of dy and M. It follows that

(32) Zni(4,v+it,mi b, 1) ew M© Y
do sq.free
(do,M)=1

‘L(%aﬂ- Y Xd0w1)|
dg

(v >3).

The absolute convergence of the series in the right hand side, for v > 5/4, can
be easily justified by applying the Cauchy-Schwarz inequality and the estimate in
Lemma 3.2.

To justify (3.1) we define two involutions on C? :

a:(s,w)—(1-s53s+w—2) and [F:(s,w)— (s+w—13,1—w).

If ZM(S, w, ) denotes the column vector whose entries are Zys (s, w, 7; 2, 11 ) with

¥1,12 € R, then by Propositions 4.2 and 4.3 in [3], there exist matrices ¥ (s) and
® s (w) such that

Zn(s,w,m) = Upr(s) - Zar(as,w), ) Zn(s,w,m) = Opr(w) - Zar(B(s, w), 7).

Applying the transformation SaBa(, one obtains the functional equation:
Zu(s,w,m) = M(s,w) - Zr(s, 3 — 35 —w, ),

where

M(s,w) = Pp(w)Tps(s+w—3)Ppr(3s+2w—2)T (25 +w —1)Ppr(3s+w — 2).

We shall need to estimate the entries of the matrix M(%, f% +it). To do this, we
recall the explicit description of, for instance, the S—functional equation (see (4.18)



8 GAUTAM CHINTA AND ADRIAN DIACONU

in [3]). We continue to let I; denote the conductor of 1; € R. If the conductor Iy of
19 is odd, we have

33) I (=p72"") Zu(s,w, w2, ¢1)

pl(M/12)

= LAY st e Y Tl )

I la| (M/l5) ) Loo(wi Xath2)

(Zm(B(s,w), T3 %2, Y133ha) + aZn (B(s, w), 7302, X—1¥19304)).
Here x; =1, and x_; is the character defined by

(m) B <4) _ (_1) ‘m\271+sgn(72n)71 lf m=1 (mod 2)
X m 0 it m =0 (mod2).

When [, is even, we have a similar expression. In fact, just the behavior at the
finite place 2 changes.
Using Stirling’s formula, we obtain the estimate

(34 [ @=p 2R Zy(s,w, w00, ¢)

pl(M/l2)
—R(w —R(w) ;— w
o 13NN RO 2 (B(s,w), i e, b))
l3,l4[(M/12)

A similar estimate corresponding to the a—functional equation can also be es-
tablished:

(3.5)
Zu(s,womsibn, i) - ] (I=laplp7> ) (1=18,17 p~> %) (1= || p~>*2)
p|(M/11)
—3R(s —R(s —R(s
<, lz (s) Z |ala‘la%() ) Z ‘Blgllﬁ (s)
la|(M/1y) lpl(M/11)
PORIRIRED DI A
Ly (M /1) lal(M/lh)
ST BT g
151(M/1y) 151(M/l1)

\
‘ZM( (3 w , T3 waawﬁw'y"l}a¢g"/}wwl)|

where we have set

(36) ala = Hp‘laap’ ﬂl/j = lelﬁﬂpa 'Ylv = lel’y’hﬁ

and similarly for oy, ’BZB’ Vi -

The functional equations are more cleanly expressed in matrix notation. We
will see that the corresponding matrices representing the right hand sides of the
estimates (3.4) and (3.5) decompose as tensor products over the primes dividing
M. To this end, write 4M = MyM;, where My is a power of 2 and M; is odd and
square-free. For the proof of Proposition 3.4, we need to bound Z,; in terms of M.
Because of the tensor product structure we will exhibit, we will see that the bounds
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we obtain are multiplicative in M. For this reason, we may ignore a finite number
of primes (e.g. the prime 2) and we may assume M; is prime.
Under these simplifications, if M7 = p is prime, we fix

Zp(S,U),’]T; 171)
7 _ Zp(&’w,ﬂ; 17¢)
ZP($7w77T) N ZP(S7wa7T;’(/}71) ’
ZP(vaaﬂ;¢7¢)

where 1) = x,, is the character associated to the quadratic extension Q(y/p’) of Q,
where p’ = (71)? p. We now define two matrices which will be used to build up
the matrices which represent the right hand sides of the estimates (3.4) and (3.5)
for the 8 and a—functional equations, respectively. Let

1+p—1 p—w+p71+w 0 0
I—p 272w I—p 2t2w
p~Wgpltw 14p~t 0 0
CI):/D(U)) — T—p-2+2w 1—p-2+2w )
0 0 p: v 0
0 0 0 pzv

u(s) =
v(s) =

(1= Jap | p=2F2) (1 = B2 p=2+24) (1 = || p~2F2%)
ko

(1= lap?p=2+2%) (1 = |Bp[? p~22°) (1 = |7 |* p~212%)

with
* = [1 + (|O‘p|71 + |5p|71 + |’7p|71)p72+2s + (lap| + Bp| + "7p|)21071
+ (|O‘p| + |/6p| + |’7p|)p73+28 + (|O‘p|71 + |5p|71 + |7p|71)19728
+ (lapl ™ 1817 + 1l ™% + (lap| + 8ol + [pl)p™' 7% +p77]
and
= [(|ap| +1Bpl + |’7p|)p_1+s +p_3+38 + (lap| +18p| + [p)p~*
+ (el +18p + D (ol ™+ 18p 1 + [~ Hp ™2+
+ (ol +18pl + D (ol ™+ 18p ! + [rplHp ™'
R I 1 B A e (e e M e Y I S i P

(We digress a moment to explain the apparent asymmetry in considering only
the quadratic extensions Q(v/p’). The characters corresponding to the extensions
Q(+v/—p’) will appear after we tensor with the matrices corresponding to the prime
2. These 16 x 16 matrices act on the 16-dimensional vector whose components
are Za(s,w,m; 1, 12), with 41 and 15 each being one of the 4 primitive quadratic
characters of conductor a power of 2. Fortunately, we will not need to write down
these matrices as we are only interested in bounds for Z); in terms of M, as M grows
large. Therefore, as remarked above, we can ignore finitely many small primes.)
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For M; odd and square-free, one can compute upper bounds for the matrices
Ui, (s) and ®ay, (w) as follows. Let p be a prime divisor of M, and let V), be a
complex vector space spanned by a basis

{ep(lg,ll) : ll,lglp}.
We consider two additional complex vector spaces V;* and Vpﬂ spanned by
{ex(la,11) : I, lalpy  {ep(la, )« h,lalp},
respectively, and let
vV, —Ve eV, —Vf

be the linear maps corresponding to W;,(s) and ®;,(w). For instance, ®;, is described
by

- w) 1 3 —wj—l4w
el ) = [ (=a2™) " 137" > 5 el (o hisly).
ql(p/l2) l3,l4|(p/12)
q#1

Here, we made the convention that eg (a,n%b) = eg (a,b).
Let

._ . — . B . g
VMI T ®p|]\41 V;” Vf\o/jl T ®p\M1 VPa ) VMl T ®p\M1 VP :

Then, Wy = @y, V) and @Yy = Qp0r, -
Now, for M7 = p, we have

1 pi 0 O
1
ps 1 0 O
Dpry (-1) < Py (1) ~ 0 0 p o |
0 0 0 pit
c;p% 0 pi 0
0 pi 0 0
U _1 U (—1) ~
Ml( 4) < Ml( 4) p% 0 c;p% 09 5
0 0 0 p1
and
1 p O 0
p 1 0 0
Bu(-) < (D~ | 0 1 g | wre
00 0 p3
where

C; = |0‘p‘71 + ‘ﬂprl + "Vprl'

Recall that by the remark (2) made after the statement of Theorem 1.1, the cuspidal
automorphic representation 7 is a Gelbart-Jacquet lift. It follows that

/ 2
cp<<p9

by the bound of Kim and Shahidi in [9]. In fact, the weaker exponent 5/28 obtained
by Bump, Duke, Hoffstein and Iwaniec in [1] would suffice for our purposes. It
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follows easily that

T
=
A

p° pi p 0

p% p% p% 0

M(L,-1) < 5o %0
0 0 0 p*

To prove (3.1) consider the first three entries of Z,(s,w,). Recall that in the
statement of the proposition, we have the condition (I1,l3) = 1,2,4 or 8. For
example, we have that

|Zp(%’ —3— €+ it,m; 1, 1)| < pv(e) : (p5|Zp(%’ Tre— it, s 1, 1)|
19 . .
+pT1Zp(3 § He— it m L)+ 0712, (3, § + e — it m g, 1)),
The factor v(e) is a linear function of e coming from repeated applications of the
functional equations. For example, when w = —1/4 — € and M; = p is prime, the
estimate (3.4) would produce a p°.

For general M, we can use the tensor product decomposition of ¥y, and ®py
obtaining

|ZM(%7 _i —€+ itaﬂ-;'(/)27,¢l)‘

<MD N MO Zag (3,5 + € — it m by, ).
3, P1ER
(I3, 1a)=1

Now, the estimate (3.1) follows immediately from (3.2). O

To conclude the section, we now prove Proposition 3.1. We have

L>™(s,7 ® Xdy)

Y (do).
dg’ X(o)

Zb(87waﬂ—;>z’r‘5lC71) =
do€K,do sq.free
do>0
As in the proof of Proposition 2.2, we can express Zb(S,w77T;)~(T(S)C7 1) as a finite
linear combination of the series

L(s,m®
Z?\/[T(Saw77r;w271> = Z %¢2(d0)
(dg,M’l"):l
do sq.free

Since r will be fixed for the rest of the section, we relabel Mr as M’'. We now
indicate how to analytically continue Z?W(s, w, w519, 1) to a region containing the
point (1/2,1).

First, we write

Zzb\4/(37w77ﬂ¢271) = Z N(Q)ZM’(Saw7W5¢2a1§Q)7
(g,M")=1
where the sum is over square-free ¢ and

L3 (s, 7 ®
Zap(s,w, w000, 150) = Y %%(%)Pdmdl(s)-
(dody,M’)=1

d1=0(q)



12 GAUTAM CHINTA AND ADRIAN DIACONU

In [2] an explicit description of the weighting polynomials Py, 4, (s) is given. We
need an estimate in the g—aspect for Zps (1, w, 7319, 1;¢) in a strip -1 —e < R(w) <
5 + ¢ with a small € > 0. From the computations of [2], we know that

Fay,a, (s) = H Pdo,pl(s)
p|ld1
and, for p prime, we have the following bound independent of d

o) 2)
Py, pi(s) w165+ eyl
Z P 4 o PPR()—1 +1
=0

where 01()2) are the coefficients of L(s, 7, sym?). Therefore for R(w) > 5/4 and R(s) >
1/2, we have
Za (5w, w3902, 15.9) < g7 (e + [egl) ¢! 1),
To obtain an estimate for f(w) < —1/4 and R(s) > 1/2, we write

(3.7) Zyr(s,w, w00, 1q) = Y p(1) 25 (s,w, w5902, 1),
llq
where
LS(s,m®
Z) (s, w, w5902, 1) 1= Z %%(%)Pdo,dl(s)-
(do,M")=1
(d1,M'1)=1

The point is that one can decompose Z](\?, as a linear combination of the functions
ZM/(Sa w, T3 ¢2a ¢1)

Proposition 3.5. We have

o2 2 2
(3.8) Z](\?,(s,w,ﬁ;wg,l)-H <1— p;;) (1 —pi) <1— p;’s> =

pll

}Z 1 H <1 _ af,) (1 _ s ) (1 _ o ) Z Xis (M1M2m3) m, By Yms
9 T Iy o p2s p2s p2s e (mimams)®
X [Zari(8,w, T5 02 Xmymams» Xis) + Z0r1(8, W, T5 02X —mymams s Xis)
+ X—1(mamams) Zai(s, 0, T3 Y2 Xmymams » Xis)
— X—1(mamams) Zni(8, w, T3 Y2 X —mymaoms s Xis )] -
We recall that o, B and 7, were defined in (3.6). The proof is similar to that

of Proposition 4.14 of [3] and will be omitted.
Applying Proposition 3.4, it follows that, for R(w) < —1/4,

L(
20w e, 1) < (M) 34 Y0 | Q’fﬁf‘i%)‘
ek, dosq.free dO lél

)

where R, is the dual of R, = (Z/4M’'qZ)* ® 7./27 and I3 is the conductor of 1.
Clearly, the same estimate holds for Zys (1, w, 712, 1;q).
We now use the Phragmen-Lindel6f principle on the holomorphic function

’P(Saw)ZM’(%aw,’/Tﬂl)Qa 1; (J)~
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Since Proposition 3.5 and (3.7) allow us to express Zy (1, w, m; 12, 1;q) as a finite
linear combination of the Z,;/’s, the fact that the above product is holomorphic and
of order 1 follows from Theorem 2.1. Therefore we may apply Phragmen-Lindel6f
and obtain the estimate

(3.9)  Zawr (3w, m59b9, 159) < (|| 4 |eg| 4 1) - g5 R+

YT |Z(3, 7 ® Xdo¥3)|

Ee d
wSERq dp sq. free do l3

for -1 —e < R(w) < & +¢. Here v(e) — 0 as € — 0.
Using the above estimate, it follows that

Zop (3w, mwe, 1) = > (@) Zar (3, w, 3402, 15.9)
(g, M")=1
is absolutely bounded by the sum of the three series
Y1+ 3 + 33,
where, for instance,

5= Y [ ERReE@ . 3y |L(5:m ® Xao¥is) |

Tre ]
gsq. free ws_e[{q dp sq. free do lg
(¢, M’)=1

Each of these sums may be bounded in the same way. As ¥; is the most difficult
to bound, we provide details in this case only.
We decompose I3 = Il with [1]4M’ and l3|q. If we write ¢ = lan, then

|L(3, 7 © XdoX1u X12)| - )] 12|
N < Z Z Z ; 3—.1(;R(wl)—§—9—v(e)z Z %?R(w;l—g—i—v(e)'

§+E 1
11]4M" 12 sq.free dgsq. free dé 114 lgb . n>1 n
(I2,M")=1
Fi 119
ix any vy > 155 Note that
31 95 o1
oy, — 22
6 " 24

Since by the work of Kim [8] and Kim-Shahidi [10], sym? () is automorphic (recall
that 7 is a Gelbart-Jacquet lift), it follows that, for ®(w) > vy and e sufficiently
small, the innermost sum is absolutely convergent. Therefore,

|L(%a ™ XdoXllez) | ’ |Cl(22)|
El < Z Z Z d%—l—slil%éﬁ(w)—%—v(e) ’
11]4M’ l2sq.free dgsq. free 0 1o
(lo,M")=1
Now, write dy = ddy and ls = dly with (dy,ly) = 1. Introducing the Euler factors
corresponding to the primes dividing d, and then summing over d, we are reduced

to estimating

2
DS 1L(3, 7 @ xa )| - 1|
54e L 3Lp,)—89 (¢ ’
Vi Godn=r di T MR
(lo,M")=1
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Let v, = min{5 + ¢, 3 R(w) — 53 — v(e)} (R(w) > vp). Note that v, > 5 for €
sufficiently small. Then, for fixed I;, we have

Z |L(%,7T®Xd1X11Xlo) |Clo < Z am’L 277F®Xlel)|

(dl lo)l’w mYw ’

(lo,d1)=1 m sq. free

(lo,M")=1
where a,, = Zlolm |cl(f)| To see that this final series is absolutely convergent, it
suffices by the Cauchy-Schwartz inequality to establish that the two series
az,
> it

m sq. free

and

Z |L(%’ T™® Xlel) |2
msq. free m3/2+5

are absolutely convergent for any d > 0. The convergence of the first follows from
properties of the Rankin-Selberg L-function of sym?(w) with itself, and the conver-
gence of the second from Lemma 3.2.

This establishes the analytic continuation of Z°(s,w, 7; X0k, 1) to

(3.10) {R(s) > 5, R(w) > 12

124

To complete the proof of Proposition 3.1, we note that, because of the functional
equation, we have the bound

L(s,7 ® Xdy) < |do|¥/*T
for R(s) = 0. Therefore, Z°(s,w, ; X0k, 1) is holomorphic in the tube domain
(3.11) {R(s) > 0, R(w) > 3}.

Applying Hartogs’ theorem [7] and taking the convex closure of the two tube do-
mains (3.10) and (3.11) completes the proof of Proposition 3.1.

4. COMPUTING THE RESIDUE

The series Z” (s, w, m; X0k, 1) has polar lines at w = 1 and at w+3s = 5/2 which
it inherits from Z (s, w, 7; X»-0x, 1). Except for these two polar lines, Z°(s, w, 7; X-0xc, 1)
is holomorphic in a neighborhood of the point (s,w) = (1/2,1). The residue of
Z°(s,w,T; Xr0x,1) at w = 1 may be computed from the known residue (2.2) of
the Zp(s,w,m; X0k, 1) and the explicit sieving procedure given in [3]. However,
with the meromorphic continuation of Zb(s,w,w; Xr0i, 1) already established in
Proposition 3.1, we shall compute the residue more directly.

We begin with the identity

B LS S, TR N
Zb(57w77T;Xr61Cal) :LSfm(Sa’/T) Z %XT(CIO)'
doEK 0
do sq.free

Interchanging the order of summation, we rewrite the sum as
Z Cn Z xa(n)Xr(d)
s dw :

n
(n,M)=1 dek
d sq.free
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Set n = nonin3 where ng squarefree and pln; == p|ng. We concentrate on the
inner sum:

Xd(n)Xr(d) _ Z Xd(n0)Xr(d)
dw |d|w
deK, sq.free dek,d sq.free
(dyn2)=1
Ly @
der, sq.free |d|w
(dyn2)=1

by Quadratic Reciprocity, as d = 1(4). We again use the orthogonality (2.3) to

conclude Dy.(d
) W == > L, (W, XngXr)
deK,d sq.free | | ¢ER
(d,n2)=1
where (d)
x(d
L (w, x) = Z ld|w
d sq.free
(d,b)=1

The residue of these L-functions is easily computed:

Lemma 4.1. Let x be a primitive quadratic Dirichlet character of conductor n and
let b > 0. Then ((2w)Li(w,X) can be meromorphically continued to R(w) > 0. It
is analytic in this region unless n = 1 when it has exactly one simple pole at w = 1

with residue )
N
b — -
By (2ot =] (1+3) -
p

Since ng and r are relatively prime to M, the L-function L?VIM (W, XnoW¥xr) will
have a pole at w = 1 iff ¢ = 1 and n = r?*T1n2 (r,ny) = 1.

Therefore, using Lemma 4.1,

52? C(2w) Z ns LJV[ng (U) Xner)

(n,M)=1
Cr2k+1, 2 1 -1
= Z Z (r2h+1p2 2 H 1+]§
(n2,Mr)=1k= 0 ;D|M7L2

00 -1 -1

Cp2k+1 Cn2 1 1

SEE I ) (R0 (S
k=0 (no,Mr)=1 2 plns p|M

Gk (CH I3 (CH

p|M (n2,M)=1 plns

We refer the reader to Lemma 2.3 for the explicit evaluations of L, and Lo .
Putting everything together, when r is a prime, (r, M) =1

ResZ (s,w,m; Xr0k, 1) = Ri(s;m) - Rp(s;m),

w=1
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where

1 A Cn3 1\ !
Ri(s;m) = Lg,,, (5,m)— 1+ - > (1—!—) ,
dom = s [T (045) - 2 B4

p|M no,M)=1 2 plna
and
1 Lh«(S)
4.1 R, (s; =(14+—-)——".
(41) (s = T)i+bA$

For r =1 a similar argument yields
52 Z°(s,w,m;0x,1) = Ry(s; 7).

Next we note that Rj(s;m) is well-approximated by the symmetric square L-
function for R(s) > 1/2.
Proposition 4.2. We have

Ri(s;m) = L%(2s,m, sym®) Bas(s;7)

where By (s;m) is an absolutely convergent Euler product for R(s) > 9/20.
Proof. The Dirichlet series in the definition of R;(s;7) has the Euler product rep-

resentation .
Z (1 + ) = JI @29,
(n,M)= 1" pln (p,M)=1
where
Qp(28) = 1+ Z 2ks
p + 1 k>1
_ Z Cp2k 1 Cp2k
- p2ks P + 1 p2ks

k>0
= Lyy(s)+ O(p~eH1/57e)),

On the other hand the symmetric square L-function has an Euler product

L5(s,m, sym?) H Tp(
(p,M)=1

—1 —1 —1
o2 2 A2
T(s)=[1- 2 1-» 1- 2
(1 . apﬂzJ)_l (1 _ ﬂp%)_l (1 _ %O‘p)_l
p® p® p?
) (-5 ) (- 5) (%)

_ 1_’_0(1)4/5—43).

For the final bound we have again used the fact that, for 7 self-contragredient,

k>1

Thus the quotient

cp =+ Bp + 7 = By + 1 + Bplp.
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Now, an infinite product
H (1 + O(p4/5—4s))
P

will converge absolutely provided 2 —4R(s) < —1, i.e. provided R(s) > 9/20. Thus

converges absolutely in this range. O

To proceed further we now use the assumption that L°(2s, 7, sym?) has a simple
pole at s = 1/2. By virtue of the previous proposition, R;(s,m) has a simple pole

at s = % as well. We set

Cpa(m) = lim (s~ 1/2) B (st).

As noted at the start of this section, the double Dirichlet series Zb(s, w, 5 Xr0Kc, 1)
is analytic in a neighborhood of the point (s, w) = (1/2,1) except for the two polar
lines

w=1and w+3s=>5/2.

Hence near the point (1/2,1) we have the expansion

. A Ay (s)
b . 0 1
Z(vaaﬂ—7XT§IC71) (w—l)(s—1/2) w—1
A, Al (s)

4.2 0 L H
(42) Y T3 596-12)  wiss—52) " HEw:
where

Ay = lirlr>2 lim (s — 1/2)(w ~ 1) 2 (s, w, 7; X0k, 1)

=
|

lim  lim (s —1/2)(w+ 3s — 5/2)2°(s, w, 75 Xr0xc, 1),

s—1/2w—5/2—3s

and A;(s), A (s) and H(s,w) are analytic near (1/2,1).

Fix w > 1 and let s — 1/2 in (4.2). The limit on the left hand side exists,
therefore we conclude that Ay = —A,. Hence at s = 1/2,
34, B,

b .o _
(43) Z (1/27w77r7X7"5K7 1) - (w — 1)2 + w—1 + I(U}),

for I(w) an analytic function in a neighborhood of w = 1. In conclusion

L Cu(n) ifr=1
(4.4) Ay = Ag(r;m) = { Cﬁ(ﬂ)Rr(l/Q;w) otherwise.

We note that Lemma 2.3 and (4.1) ensure that R, (s; 7) makes sense for R(s) > 9/20.
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5. PROOF OF THEOREM 1.1

We are finally in a position to prove our main result. We assume 7; and 7o are
two self-contragredient cuspidal automorphic representations of GL3(Ag) of trivial
character and levels Ny, Ny respectively. We suppose further that L(s, 7, sym?)
has a simple pole at s = 1. Choose the finite set S to contain 2, the archimedean
place, and all the places of bad ramification of 7 and ms.

We assume there exists a nonzero constant x such that

L(1/2,m ® xa) = kL(1/2,m2 @ xa)

for all positive squarefree integers d € K. Let Z°(s,w, 71; Xr0x, 1) and Z° (s, w, wa; X5, 1)
be the associated double Dirichlet series. Letting r = 1, we see

(w—1)22°(1/2,w,71; 0k, 1) = 3Cas(m1) + O(w — 1).
by (4.3) and (4.4). On the other hand,
(w—1)22"(1/2,w,71; 6, 1) = k(w—1)22"(1/2,w, 72; 6xc, 1) = 36Cas (2)+O0(w—1),
whence

Cr(m1) = kChy(m2).
Similarly, if r is prime and (r, M) = 1,

3Cn (m)R-(1/2;71) + O(w — 1)

(w = 1)*2°(1/2,w,m; X, 05, 1)
= K,(’LU— 1)2Zb(1/27wa772;>€7‘61C51)
3I€C]y[(7T2)RT(1/2; 7T2) + O(w — 1)7

as w — 1. Equivalently
R.(1/2;m) = R-(1/2;72).

Lemma 5.1. There exists a rational function h,.(t) such that
he(cr(m1)) = R.(1/2;7m1).

Moreover, the function h,(t) is monotone for r sufficiently large and |t| < r'1=¢, for
any € > 0.

Proof. Combining Lemma 2.3 with Eq. (4.1) and Eq. (2.5), we get

ree(m) +1
cr(m)2(r —12) + e (m) (3 +2r2 = 2r) + (Pt + 13 — 1)
Let h,(t) be the function defined by

R, (1/2;m) = (r 4 1)r/?

rt+1
2(r—r2) 4+t +2r2 =2r)+ (rt + 13 - 1)’

o (t) == (r + 1)r3/?

Note that
B(t) = ro2 (12 = 1) (=14 r+2r2+1% + 2t +rt?) .
(1473474 =27t + 202t + 3¢+ 72 — r2¢2)°
Fix e > 0. If r is sufficiently large in terms of €, the derivative is strictly positive
for |t| < r17¢. Thus h,.(t) is monotone for ¢ in this range. O

To complete the proof of Theorem 1.1, we use Lemma 5.1 to conclude that if
R.(1/2;m) = R,(1/2;72), then c¢.(m1) = ¢, (m2) for all r sufficiently large. The
strong multiplicity one theorem now implies that m; ~ 7.
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