MEAN VALUES OF BIQUADRATIC ZETA FUNCTIONS

GAUTAM CHINTA

1. INTRODUCTION

Let h(d) be the number of primitive inequivalent binary quadratic forms
of discriminant d. In Disquisitiones §302 and 304 [8], Gauss gives conjectures
for the average value of h(d) if d < 0, and for the average value of h(d) log(eq)
if d > 0, where in the latter case, €4 is derived from the fundamental solution
to Pell’s equation. Gauss’s conjectures were first proved by Lipschitz [12]
(for negative discriminants) and Siegel (for positive discriminants) [14].

When d is a fundamental discriminant and x4 the primitive real Dirich-
let character associated to the quadratic extension Q[v/d], Dirichlet’s class
number formula relates the value of the L-series of x4 at s = 1 to the class
number h(d). Thus Gauss’s conjectured asymptotics are equivalent to con-

jectures for sums of the type
> L(1xa)

0<+d<X

as X — 00. Subsequent authors have investigated asymptotics for sums of

the type
> L(s,xa)
0<td<X

for Re(s) > 1/2.
The greatest difficulties occur at the point s = 1/2. Jutila [11], verifying
a conjecture of Goldfeld and Viola [10], showed that

(1'1> Z L(1/27Xd) . CleogX + cox + O(x3/4+€)
O0<td<X

for certain constants c1, ¢z. Takhtadzjan and Vinogradov [15] establish a sim-
ilar result. Using the theory of metaplectic Eisenstein series, Goldfeld and
Hoffstein [9] improved the exponent on Jutila’s error term to 19/32+e¢. They
exploited the fact—first noticed by Siegel [13]—that the Dirichlet L-function
appears in the Fourier expansion of the half-integral weight Eisenstein se-
ries on I'g(4). By taking the Mellin transform of this Eisenstein series, one
obtains a double Dirichlet series whose coefficients involve the L-functions
L(s,xq)- The asymptotic of [9] then follows from standard Tauberian tech-
niques. This approach has been vastly generalized in recent years. We refer
the reader to [3] for a survey of the role of metaplectic Eisenstein series in
1
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constructing multiple Dirichlet series and applications to number theory and
the theory of automorphic forms.

As ((s)L(s, xq) is the zeta function of the field Q[v/d], the result (1.1) can
be viewed as an asymptotic for central values of zeta functions of quadratic
extensions of Q. In this paper we prove an asymptotic formula for a weighted
sum of central values of zeta functions of biquadratic extensions of a number
field K. To keep notation to a minimum in this introduction, we content
ourselves with stating our main result (Theorem 2.3) over the base field Q.

We recall that if L = Q[v/d1, v/d2] with dy,ds fundamental discriminants,
(di,da) = 1, the zeta function of the field L is

CL(S) = C(S)L(Sv Xdl)L(S7 Xd2)L(57 Xd1d2)7

where ( = (g is the Riemann zeta function. When d is not a fundamental
discriminant, we continue to let x4, denote the quadratic character associ-
ated to the extension Q[v/d] of Q. Let Ly (s, x4) denote the L-function with
the Euler factor at the prime 2 removed. Let f be a smooth, compactly
supported test function satisfying [ f(z)dz = 1. Our main result is

(1'2) Z a(dla d2)L2(%’ Xd1)L2(%’ XdQ)LZ(%’ Xdldz)f (%)
d1,ds 0dd
_o()ee)?
24!
as X — oo. For lower order terms in the asymptotic and an error term, see
Theorem 2.3. The weighting factor a(di, d2) satisfies

Xlog X,

e a(dy,ds) =1 if dydy squarefree
e The weights are “small” in the sense that, for d;ds squarefree,

[e.9]

Z n%w Z a(midy, mady)

n=1 mimo=n2
converges absolutely for Re(w) > 1/2.

The weighting factor is described in greater detail in Section 4.1. It is
natural in the sense that its presence is required in order that a certain
multiple Dirichlet series have a full group of functional equations. According
to a conjecture of D. Bump, the multiple Dirichlet series we construct should
coincide with a Whittaker coefficient of a metaplectic Eisenstein series on
the double cover of GLg. See section 3 for further remarks.

Acknowledgments. It is a great pleasure to thank Prof. J. Hoffstein
for numerous enlightening conversations. I am also grateful to the referee
for suggesting several improvements to this paper.

2. PRELIMINARIES

Let K be a number field with ring of integers O. Let Sy be a finite set
of non-archimedean places such that Sy contains all places dividing 2 and
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the ring of Sg-integers Og, has class number 1. Let So denote the set of
archimedean places and let S = Sy U S.

Let (2) be the quadratic residue symbol attached to the extension K (/a)
of K. We extend this symbol as in Fisher and Friedberg [6]. We review the
definition.

For each place v, let K, denote the completion of K at v. For v nonar-
chimedean, let P, denote the corresponding ideal of O, and let ¢, = |P,|
denote its norm. Let C = Hvesf P with n, = max{ord,(4),1}. Let
H¢ be the narrow ray class group modulo C' and let Rg = He ® Z/27.
Write the finite group Rc as a direct product of cyclic groups, choose a
generator for each, and let & be a set of ideals of O prime to S which
represent these generators. For each Ey € & choose mpg, € K* such that
EyOs, = mp,Og,. Let £ be a full set of representatives for R¢ of the form

[15,ce, ESLEO, with ng, € Z. If £ = [[g,ce, ESEO is such a representative,

then let mg = HEoe&) mgso Note that EOg, = mgQOs, for all E € £. For
convenience we suppose that O € £ and mp = 1.

Let J(S) denote the group of fractional ideals of O coprime to Sy. Let
I,J € J(S) be coprime. Write I = (m)EG? with E € £ m € KX,
m = 1mod C, and G € J(S) such that (G,J) = 1. Then as in [6], the
quadratic residue symbol (™5£) is defined, and if I = (m/)E'G’ % is another

such decomposition, then E' = E and (m/f]nE> = ( m?E) In view of this

define the quadratic residue symbol (§) by (§) = (™3£). For I = Iyl}
with Iy squarefree we denote by x the character xr(J) = x1,(J) = (170)

Further, in the expression X](j ), we let J represent the part of J coprime
to Ip. This character x; depends on the choices above, but we suppress this
from the notation.

Proposition 2.1 (Reciprocity). [6] Let I, J € J(S) be coprime, and
a(l,J) = xi1(J)xs(I)"t. Then oI, J) depends only on the images of
I and J in Ro.

Let Z(S) denote the set of integral ideals prime to S¢. Let Lg(s, xs) be
the L-function of the character x;, with the places in S removed. If £ is
any idele class character then the L-function L(s,&) satisfies a functional
equation

(2.1) Loo(5,8)L(5,8) = €(5,6)Loo(1 — 5,6) L(1 — 5,671,

where €(s, ) is the epsilon factor of £ and L (s,§) is the archimedean com-
ponent of the L-function.

Proposition 2.2. Let E,J € O(S) be squarefree with associated characters
XE, XJ of conductors fg,f; respectively. Suppose that x5 = xpxr with I €
K>, I =1mod C. Let v be another character unramified outside S. Then

(22)  e(s,xa%) = e(1/2, x1)0(If1/5E) (F1/FE])* 7" e(s, xB¥).
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Here €(1/2, x1) is given by a (normalized) Gauss sum, as in Tate’s thesis.
We may now state our main result.

Theorem 2.3. Let a(ls, 1) be the weighting factors given by (4.12). Let f
be a smooth, compactly supported test function on (0,00), satisfying

/OOO F@)do = 1.

Then for any € > 0, as X — oo,

23) > a(I2,I4)Ls(%,x12)Ls(%,X14)LS(%7X1214)f<|I§(I4|>

IQ,I4€I(S)
Cs(2)¢s(2)3 1 s & ; 3/44e
NTES 1‘@ X log X+;A1X(logX) + O(X3/4ey

where ¢ denotes the zeta function of K and the constants Ag, A1, Ao, As
are all effectively computable in terms of the Mellin transform of the test
function f. The implicit constant in the error term depends on €, K and S.

The proof of the theorem is a consequence of the analytic continuation of
a certain multiple Dirichlet series constructed in Section 4.

3. DYNKIN DIAGRAMS AND MULTIPLE DIRICHLET SERIES

In 1996 Bump suggested a correspondence between quadratic multiple
Dirichlet series and Dynkin diagrams. Suppose that we are given a simply-
laced Dynkin diagram, with vertices vy, --- ,v,. We can try to attach to the
Dynkin diagram a multiple Dirichlet series which is roughly of the form:

9] n
) — _
g || (—) ny*teeen, o
s
ni,n2,...,nr=1 |7 > i, v; adjacent to v; J

ng
nj

When n;n; is not squarefree the symbol ( ) must replaced by an appro-

priate weighting factor. Summing over n;, while fixing all n; with k& # 1,
will produce a function of s;. Bump suggested that weighting factors could
be chosen in such a way that this function would satisfy a natural functional
equation as s; — 1 — s;. This functional equation will induce (in the mul-
tiple Dirichlet series) a linear change of the variables s, s2, ..., s, sending
si — 1 —s;, and s; — s; +s; — 1/2 if v; is adjacent to v;. The other sy
are left unchanged. Denoting this functional equation by o;, we have the
relations
o? =1, (Uiaj)e(i’j) =1,

where €(7, j) = 3 if v; and v; are adjacent nodes in the Dynkin diagram, and
€(i,7) = 2 if they are not, see [3]. These are the well-known Coxeter relations
generating the Weyl group associated with the Dynkin diagram. By simple
one-variable convexity estimates, the region of absolute convergence of the
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multiple Dirchlet series contains the complement of a bounded subset of a
Weyl chamber. Since the Weyl group acts transitively on Weyl chambers,
it should therefore be possible (provided the appropriate weighting factors
can be constructed) to analytically continue the multiple Dirichlet series to
the complement of a bounded subset of C", and hence—by the convexity
principle of several complex variables—to all of C". If this can be done, the
multiple Dirichlet series is said to be “perfect.”

This procedure has been carried out in detail for the Dynkin diagrams
Ay, Az and Dy, see [14],[9], [6], [5], [4]. These multiple Dirichlet series
give asymptotics for mean values of quadratic twists of L-functions on
GL(1),GL(2) and GL(3). Bump conjectures that the multiple Dirichlet se-
ries constructed in this manner coincide with the Whittaker coefficients of
Eisenstein series on the metaplectic double cover of the split simply con-
nected semisimple group associated with this Dynkin diagram. In an un-
published computation of Bump and Hoffstein, this has been verified when
the Cartan type of the Dynkin diagram is Ay, in which case this Dirichlet
series is associated with the Eisenstein series on the metaplectic double cover
of SL(3).

There is also a relation between Dynkin diagrams and multiple Dirichlet
series constructed from higher order twists. This construction together with
a conjectural connection to Fourier coefficients of Eisenstein series on n-
fold metaplectic covers will be described in [2]. Brubaker and Bump have
recently made great progress on showing that these multiple Dirichlet series
are perfect, see [1].

In the following section we construct the multiple Dirichlet series associ-
ated to the Dynkin diagram As. Theorem 2.3 will be a consequence of the
analytic properties of this series.

We conclude this section with an observation by the referee which lends
further credence to the conjecture above. The construction of the weight-
ing factors alluded to above turns out to be equivalent to the construction
of a rational function invariant under a certain action of the Weyl group.
This action is described in the following section and the rational function
is presented in the Appendix. Multiplying the denominator of the rational
function by (1 4+ z)(1 + y)(1 + 2)(1 + w)(1 + v) allows us to pull 15 zeta
functions out of the multiple Dirichlet series. These 15 factors coincide (for
a suitable variable choice) with the normalizing zeta factor of the Eisenstein
series on the metaplectic double cover of GL(6).
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4. A MULTIPLE DIRICHLET SERIES ASSOCIATED TO THE DYNKIN
DIAGRAM Aj5

We retain the notation of section 2. Let 1, ..., 15 be quadratic idele class
characters unramified outside S. Define the the multiple Dirichlet series

(4.1)  Zs(s1, 52,53, 54, 8501, P2, 3, Y4, 105) =

Xt (1) x, (I3)x 1, (Is)x 1, (Is) TTi=3 (1)
Z ‘Ii|sZ

911, I, I3, 14, I5),
Il,...,I5€I(S) Hi=1

where g is a certain weighting factor to be specified below. This factor
must be included to insure that Zg satisfies the proper group of functional
equations.

4.1. Construction of the weighting factor. We begin by listing the
properties we need g to have. Then we show that such a g exists. Firstly,
we require that g is multiplicative in the following sense

(42) (117[27137I47I5 H g Poq POQ PO‘J pes POCS)
Pl

and that

(4.3) g1, Iz, I3, 14, I5) = g(Is, 14, I3, I2, I1).

Moreover, g must be chosen so that (4.1) satisfies functional equations as
s; — 1 — s;. Precisely, we require

e For Iy € Z(S) set Iy = JoJ? with Jy, J1 € Z(S), Jo squarefree. Then,
for fixed I3, Iy, I5 € Z(S),

XJ Il 1/11 Il )
(4.4) Z EERTATI | 1|51 g(I1, I, I3, 1y, I5) :L(S1,XJowl)QgIS,MJS(Sl,wl),

where the weighting polynomial Q() satisfies the functional equation

1
(4.5) Qs (s1.00) = [A2QY), (1= s1,4).

e For I1,I3 € Z(9) set I1I3 = JoJ? with Jo, J1 € Z(9), Jo squarefree.
Then, for fixed Iy, I5 € Z(S),

XJ I2 1/}2 IQ )
4 6 Z AT |_[2|52 (I17 -[27 -[37 I47I5) = L(527XJOwQ)le?[S,Lh]s(SQJ w2)7

where the weighting polynomial Q) satisfies the functional equation

2 260 (2
(4.7) Q§1?13714,15(82) = |J1|1 2 2@%?]37]4,[5(1 — 52,12).
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e For I, I € Z(9S) set IIy = JoJ? with Jo, J1 € Z(S5), Jo squarefree.
Then, for fixed I, I5 € Z(.9),

XJ IS ng Ig 3
Z BT A ’I3|55 ) (II7I27I37I47[5) = L(837XJ())Q(113127I4’I5(S37'lpg),

where the weighting polynomial Q®) satisfies the functional equation

3 —2s 3
(49) Q(11312J4,I5 (83) |J1’1 ? 3Q§1?[2,I4,I5(1 — 5 w?’)

The symmetry (4.3) implies that sums over I and I5 will satisfy analogous
functional equations in s4 and s;. We also note that as ¢ is multiplicative,
the Dirichlet polynomials Q) will be (finite) Euler products for 1 < j < 5.

We now show that a weighting function with the above properties exists.
By multiplicativity it suffices to define g(P7, P*, P!, P™, P") for j, k,1,m,n >
0 and P a prime ideal of norm p. We introduce the new variables

—3s5

r=p ty=p P z=p B w=p Fv=p
and consider the rational function
H(:E’ y’ Z? w7 /U)

given in the appendix. The proposition below is readily verified using any
computer algebra system. We hope in a later work to give a more concep-
tual and less computational construction of the rational functions needed
to construct multiple Dirichlet series associated to a general simply-laced
Dynkin diagram, as explained in the previous section.

Proposition 4.1. The rational function H satisfies
o H(z,y,z,w,v) = H(v,w, z,y, )
o The functions

(1—2x) [H(a:, Y, z,w,v) + H(x, —y, z,w, v)]
and )
— | H(z,y,z,w,v) — H x,—y,z,w,v}
L )~ H( )
are tnvariant under
({,U, y) Z7w7v) — (I%x?xy\/ﬁ7 Z’w)v)'
e The functions

(1—-vy) [H(:L', Y, z,w,v) + H(—z,y, —2z,w, v)}

‘li 'I’y) Z7w7v ‘11 5[73/’ Z7w7v

are tnvariant under

(177 Y, =z, w, /U) = (xy\/]_)7 piyu yz\/ﬁa w, U)'
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e The functions
(1 - Z) |:H(.Z', Yy, z,w, ’U) + H(.Z‘, —-Y,z,-w, U)i|

and

: [
H(z,y,z,w,v) — H x,—y,z,—w,v}
il ) H( )
are invariant under

(IE,y,Z,’LU,’U) = (x,yz\/}_?, é?wz\/ﬁﬂ U)'
If we define g(P7, Pk, P!, P™, P") by

(4.10) H(z,y,z,w,v) = Z g(P7, P* Pl P™ Pl yk ™o
7,k,l,m,n>0

and extend multiplicatively, then, in view of the previous proposition, these
coefficients g will satisfy (4.2) - (4.8), as desired.

We can now also describe the weighting factors a([7, [2) that appear in
the statement of our main result, Theorem 2.3. Define Py, 1,(s1, 53, 55; P)
to be equal to

P
1— X‘?‘(Sl) if ordp (I2) even, ordp(I4) odd
X1, (P) i I I
4 11) 1-— TP if ordp(I2) odd, ordp(l4) even
. (P) .
( 1— X’|2PI‘4¢,3 if ordp(I2) odd, ordp(I4) odd

X1, (P) x1, (P) X1, (P) )
(1_ IPQ\Sl ) (1_ |P4\55 ) (1_ ‘37#93 ) otherwise

Then the weighting factor a(Is, I4) of Theorem 2.3 is given by
(4.12)

DJ pl pn pn
11 1. XI5 (PP)X1, (P )x1y (P")x1s (P™) 5 s pl pas pn
H Pry,(3, 3,35 P) Z pi/2pl/2pn/2 g(P?, P72, PL, P74, PT)
P2 ||Iy J,l,n>0

P4 |14

4.2. Functional equations for Zg(s1, s2, 53, 54, 5). Summing over I; first
in the series (4.1) defining Zg will produce an L-function in the variable s;,
which will have a functional equation as s; +— 1 — s;. This will lead to
a functional equation for the multiple Dirichlet series Zg. We exhibit the
s1 — 1 — s7 relation in detail.

For Iy € Z(S) set Iy = JoJ? with Jo, 1 € Z(S),Jo squarefree. Let
I, I3, 14, I be fixed ideals in Z(S). Consider the sum

(1)1 (L .
> X |Il rfll 2 g1, 12, 13,14, I5) = Lg(s1, X1, %1),
nez(s) !

say, where L denotes the product of the L-function with the weighting poly-
nomial as in (4.4). Let us write x7, = xgXxJ/, with J' € K*,J' =1 mod C.
Combining the functional equation of the L-function (2.1) with that of the
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weighting polynomial (4.5) and taking care to replace and remove the primes
in Sy, we find that Lg(s1, x1,%1) satisfies the functional equation

2 Loo(1 — s1, x1,¢1) 11 ( 1 —xn(P)y(P)|P]™* )

Lg(sq, =
s(s1, x1,91) Loo(stxitn) g, \1 = X (P)vn(P)[Ps!

1/2—s1 .
|J2[Y2=51e(1 — 5, xpb1 ) Ls(1 — s1, X1,%01)

_ 1 — x5, (P)y1(P)| P
= A(s1,E,¢1)PH (1_X12(P)w1(P)|P|81—1>
ESf
x| Io| 7 L (1 = 1, x1,¢1)

where A(s1, E,11) depends only on the class E of Iy in R¢. The same is
true of the quotient of Euler factors. Thus

(413) £5(317X12w1) = B(817 E, wl)’12|1/2781£3(1 - 317X121/)1)

We will find it convenient to extend the notation of (4.1) to allow arbitrary
functions on R¢ in place of the ;. In particular, if F is a class in R, we
let 6 denote the characteristic function of this class and

n
=

X

Z5(81, 52,53, 84,85, V10, Y2, ..., 5) =

=5 (T.
T Xr (1) X1 () x1, (I5) X1y (13) T T z(fz)g

1=5 )
I, I5€T(S) [L=1 15l
L1 ~FE

(-[17 I27 I37I4)I5)7

Summing (4.13) over I3 projecting to E in R¢,

1 <1 Py (P)

|P|1,S1 ) ZS(Slv 52,83, 54, S5; wla ¢26E7 17&35 ’(;Z}47 1/}5)

PeSy

= A(Sl, E, @ZJl) H

PesSy
Zs(1 —s1,52 4+ s1 — 1/2, 83,54, 85,91, V205, V3, Y4, 5),

(1 xulPytr)

or equivalently,

P2
H <1 — !11@112—_231) Zs (1, 82, 83, 84, 85311, Y205, V3, 14, ¥5)

PeSy

— A(s, By [ <1 B XIQ(PWI(P)) (1 n XIQ(P)%(P))

Pl PP
PesSy

Zs(1 —s1,82 4+ s1 — 1/2, 83,54, 85; 91, V205, V3, Y4, 5),

Now summing both sides over F € &£ will produce a functional equation
for Zg(s1,s2, 83, 84, S5; 101, ¥20p, V3,14, 15). Functional equations for Zg as



10 GAUTAM CHINTA

s; — 1 —s; for i = 2,3,4,5 can be established similarly. We list the results
below.

Theorem 4.2. Let s = (s1, S2, $3, S4, S5). The multiple Dirichlet series Zg
satisfies the following functional equations:
o Let oi(s) = (1 —s1,81 4+ s2 —1/2,83,84,55). Then

2
1 <1 _ ;}gg_?) Z5(3 01, U2, U3, s, )

PeSy
= Z D(s1;€, 1) Zs (018,91, P28a, V3,104, 5)
§2ERC
o Let o9(s) = (s1+ 82— 1/2,1 — 59,89+ s3 — 1/2, 84, 85). Then

P2
11 <1 - r]ﬁjﬁg—%ﬁ) Zs(s;v1, 2,93, ¢4, ¢¥s5)
PesSy
- Z ¢(52;£17£37wQ)ZS(UQS;w1€l7w27¢3€37¢4)w5)
£1,€3€Re
o Let o3(s) = (s1,82+ 83 —1/2,1 — 83,83+ 84 —1/2,55). Then

P2
1 <1 B ’1]/;3’2__2)> Zs (s 1, o, s, v, )

PGSf

= Z D(s3; 82,84, vV3) Zs (0385 91, 262, Y3, Yaba, P5)
£,€4€Rc
o Let 7(s) = (s5, S4, 83, 82,51). Then

ZS(S; ¢l) 77[)27 ¢3) 77[}47 ¢5) = ZS(TS; 1/}55 ¢47 1/}35 ¢27 1/}1)

The functions ®;(s;-) are linear combinations of quotients of Gamma func-
tions multiplied by finite Euler products in s and 1 — s.

4.3. Analytic continuation of the multiple Dirichlet series. We will
be brief in this section as the procedure for analytically continuing a multiple
Dirichlet series satisfying sufficiently many functional equations has been
described in detail elsewhere, see [4],[5]. We remark only that the region

R = {(s1, 52, 53, 54, 85) : Re(s1) > %}

is a fundamental domain for the action of the group G generated by o1, 09, 03
and 7 on C®. Using standard convexity estimates for L-series, the multi-
ple Dirichlet series Zg(s1, s2, S3, 84, S5; U1, V2, V3,14, 15) can be shown to be
meromorphic in the intersection of R with the complement of the ball of
radius 2 centered at the origin. By the Hartogs’ theorem in several com-
plex variables, it follows that Zg can be meromorphically continued to C?.
Moreover, the polar divisor of Zg will be contained in the set of trans-
lates of the hyperplane {sy = 1} by the group G. In particular, in the case
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P =1,i=1,...,5, there exist exactly 8 polar hyperplanes passing through
the point (1/2,1,1/2,1,1/2).

5. COMPUTATION OF THE RESIDUE

Henceforth we specialize our investigations to the series
Zs(s1, 52, 83, 84, 85) = Zs(51, 82, 83, 84, 85; 1, 1, 1,1, 1).

We wish to determine the analytic behavior of Zg(1/2,s,1/2,s,1/2) as s —
17", For this we will need to know some of the properties of the A3 multiple
Dirichlet series

YS(51782783) = lim ZS(81752783784785)
54,8500
1 (1)xn (12
= Z X Q(i_f)iXI2i, )gY(IhIQaI?))‘
nnners) il
The multiplicative weighting coefficient gy is determined by the generating
series

(5.1) Hy(z,y,2)= > g(P7,P* Phalyrs
5,k 1>0
1—y(z + 2 —x2) + pylez(l — 2 — x) + py322a?
(- a) (- y) (1 - 2) (1 - pa?y?) (1 - py?2?)(1 - pPaty??)
as can be established by setting v = w =0 in H.
This series was studied in [7]. Of relevance to us, is that the behavior of
Ys(s1, s2, s3) near the point (1,1,1/2) is given by
(5.2) (1/rs)Ys(s1,s2,83) = CS(Ss)CS(%Q;fS(zlSZ + 26— 1)
L 65(251)Cs(253)Cs (51 + 53) | C5(251)Cs(2 = 253)Cs(s1 — 53 +1)
s9— 1 sy +s3—1
+ f(s1,52,83)

where f(s1, 82, s3) is holomorphic in a neighborhood of (1,1,1/2) and

re= ] (1—%).

pESf

This fact may be established by methods similar to, but simpler than the
methods of the following paragraph.

By the results of the previous section, Zg(s1, s2, s3, S4,S5) has 8 polar
hyperplanes going through the point (1/2,1,1/2,1,1/2). These are:

(5.3) {82 = 1}, {81 + 59 = 3/2}, {81 + 89 + 83 = 2}, {82 + 83 = 3/2},
{84 = 1}, {85 + 84 = 3/2}, {85 + S84+ 83 = 2}, {84 + 83 = 3/2}.

We need to compute the residue of Zg along each of these polar divisors.
We begin with the residue along {sy = 1}.
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Proposition 5.1. For sy, s3, 84,55 > 1,

(5.4) sggsi Zs(s1, 82, 83,54, 85) =

rsYs(s1+ s3, 84, 55)Cs(251)Cs(253)Cs (253 + 254 — 1)(s (283 4 254 + 255 — 2),

1
where 15 = [[peg (1 - W) .

Proof. For s1,s3,84,85 > 1,

Res Zs(s1, 52,83, 54, S5)
So=

I I
= Res Z wg(lla-[QvL%Iﬁblf))

- ——
2=ty eeresy 1Ly Gl
1113=I:|
xr.(Is)xr,(Is)
- R N, I, Lo, T
Szgsl Z |Il‘51u3|53|]4’54|[5|55g( 1,43, 14, 5)7
Ih,I3,14I5€Z(S)

say, where the new coefficients ¢'(Iy, Is, I, I5) are defined by

/ _ 9(117-[27-[37-[4715)
(5.5) g'(In I3, Iu, I5) = Res 3 e :
I,eZ(S)

The coefficients ¢’ are again multiplicative, and thus determined by the
generating series

H'(z,z,w,v) = Z g (P, P! p™, P")szlwmvn
7, l,;mn>0
By the definition (5.5), we deduce that H'(z, z,w,v) is

1 . ,
<1 — —> Z g(P?, P* P\ P PM)xiyk ™|

P7 ik imn>0 =5
Jj+l even
1 1 1 1
=3 1- ]—? [H(m,ﬁ,z,w,v) —i—H(—m,E,—z,w,v)]
Referring to the appendix,
H/(x’ Z? w? U) =
1 —vw—wzrz+vwxz + pvwzxz — pvasz — pvw2x2z2 + pv2w3$222

denominator
where the denominator is

(1 —v)(1 —w)(1—pr*w?)(1 —2?)(1 —z2)(1 — 2?)

(1 — pw?2?)(1 — p*v* w23 (1 — pw?2?2%) (1 — p*v*w?z?2?)

Comparing this with (5.1) and (5.4) completes the proof of the proposition.
O
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As the other polar divisors of Zg(s1, s9, s3, S4, S5) are translates of the
the divisor at {s2 = 1}, by the group of functional equations, the other 7
residues can be computed by applying the appropriate functional equation
to the residue in Proposition 5.1. We record these below:

e Residue at {s; + s2 = 3/2}:

(5.6) Ys(l — 81 + 83, 54, 85)C5(2 - 251)Cs(283)
Cs(2s3 + 284 — 1)(s(283 + 284 + 255 — 2) + O(s1 — 1/2)
e Residue at {s1 + s2 + s3 = 2}:

(5.7) Yg(2—s1 — 53,83+ 54— 1/2,55)(5(2 — 251)(5(2 — 2s3)
(5(254)Cs(254 + 255 — 1) + O(s1 + 53 — 1)
o Residue at {s2 + s3 = 3/2}:

(5.8) Yg(l + S1 — 83,83+ S4 — 1/2, 35)<S(231)CS<2 - 283)
(s(254)Cs(284 + 285 — 1) + O(s3 — 1/2)

The implicit constants in the O-notation are uniformly bounded in a neigh-
borhood of (1/2,1,1/2,1,1/2). The other four residues follow from the sym-
metry

ZS(817 827 837 847 85) = ZS(S57 847 837 827 81)'

Summing up all of these polar contributions, we find that

rs¢s(3)¢s(2)? < 1 )

(5.9) Z5(1/2,5,1/2,5,1/2) = o1y +0 GO

as s — 1.
A closer investigation of the polar hyperplanes reveals that
(S - 1)525(%7 S, %7 S, %)
has an additional pole at s = 3/4 but is analytic for Re(s) > 3/4. Also, an
argument identical to that given in Proposition 4.12 of [5] shows that for
any € > 0,
(s —1)°Zs(3,5, 3,5, 3)
has polynomial growth in Im(s) when Re(s) > 3/4 + e.

To prove Theorem 2.3 we take a smooth, non-negative test function f
compactly supported in (0,00). Thus the Mellin transform f has super-
polynomial decay in vertical strips of bounded width. By the Mellin inver-
sion formula, we obtain

1 24100 B
(5.10) 2772/2 ‘ ZS(%,S,%,S,%)f(S)XSdS
—100

= Y all L)Ls(h,xn) Ds (3 xi) Ls (3 xan)f (M)
I2,14€Z(S)
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On the other hand, moving the line of integration to Re(s) = 3/4 + ¢, we
pick up the pole of order 5 at s = 1, which has a residue of the form

Ay X (log X)* + A3X (log X)3 + A3 X (log X)? + A1 X (log X) + A X,

where (3) (2"
= Cs(5)Cs(2 1
Ay = f(l))—=——"r—— 1——
PesS
and the other constants Ay, ..., A3 can also be computed explicitly in terms

of derivatives of f at 1. The integral at Re(s) = 3/44 € converges absolutely
and provides the error term O(X?3/4t€), with the implicit constant depending
on ¢, K and S.
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6. APPENDIX

In this Appendix we present the rational function whose properties were
described in Proposition 4.1. The reader wishing to check the proposition
may download the rational function from

http : / /www.math.brown.edu/ chinta/a5poly
We have

numerator
H(z,y, 2 w,v) = denominator’

where the denominator is

61) (1-2)(1-y) 1-2) 1-w) (1-v) (1-pv*w?) (1-pa’y?)
(1—pw222) (1—p2v2w222) (1—py222) (1—p2w2y222)
(1—p3v2w2y2 22) (1—p2x2y2z2) (1—p3w2x2y222) (1—p4v2w2x2y2 22)

and the numerator is given by

(6.2) 1—wvw—ay+vwry —wz+ vwz+

pv2w2z — Yz t+wyz — pvwzyz + pv2w2yz + xyz — vwryz + p:vaZ—

2,2, 2 2,2, 2

pwmsz + p2vw2xy2z —p viw xyzz — pmzyzz +pwx2y2z - psz Ty z+

p202w2x2y2z — pvw222 +pvzw3z2 +pwyz2 — pva22 — pw2yz2 + pvw2y22+

202w3y22+p2v3w3yz2 —pwxyz2+pvwa:y22+pw2xyz2 —

21)2w3:vy22 — p2v3w3xyz2 — pwy222 +pva222 — p2v2w2y222+

p202w3y222—pxy2z2+pwxy2z2—p2vw2xy222+p2v2w2xy2z2 —p2w2x2y2z2+

p2vw2x2y222 o p3v2w2x2y2z2 —|—p2vw3x2y222 —p2v2w3x2y222+

p3v3w3x2y222+pwxy3z2—pvwmy3z2+p2v2w2xy3z2—pzv2w3xy3z2+p:c2y3z2

o pwx2y322 . p2wx2y322 +p20w$2y322 +p2w2$2y3z2 o p2v2w2x2y322

_ p2vw3x2y322 +p2,02w3$2y322 +p3v2w3x2y3z2 _ p3v3w3x2y322

+p2wx3y3z2 _ p2vwm3y322 +p3v2w2x3y322 _ p3v2w3x3y322 +pvw2yz3

— pvw3yz3 —|—p2v2w4yz3 —p2v3w4yz3 — pva:L‘yz?’ —I-pvw?’xyz?’ — p2v2w4xyz3

+p2v3w4xyz3 +pw2y2z3 . pvw2y2z3 . p2vw2y2z3 +p2v2w2y2z3—|—
p202w3y2z3 . p2v3w3y223 —p202w4y2z3 +va?,wAtyzz?, +pwxy223—
pvwxy2z3 — prmyzz3 — p2w2xy223 + pva:L‘y223 + pngzxyzzg—
p3vzw2xy223 —|—p2w3xy223 . p2v2w3xy2z3 +p2v3w3xy223 . p3vw4xy223+
p202w4xy223 +p3112w4a:y2z3 —p2v3w4my2z3 —p4v3w4xy2z3 +p4v4w4xy223+

p2w2x2y223—pngQx2y2z3+p3v2w2x2y223—p2vw3x2y223+p3v2w3x2y223—

powdyz2—poiwdyz?—p

pvwgmyz2 +p
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Prtuway?2® + prowyt 2 — p22ulyP2d — pwayt2 + prwrytsS—

p202w2xy3z3+p2v2w3xy323+p2w2x2y323—p2vw2x2y3z3—|—p3v2w2x2y3z3—

p2w3$2y3z3+p2vw3x2y323—p3v2w3x2y323+p3vw4x2y323—2p3v2w4x2y3z3—|—

3’LU4.’L'2y323 +p4v3w4:1:2y3z3 —p4v4w4x2y3z3 —p2w2x3y3z3 +p2vw2$3y323—

2 3x3y3z3+p302w4x3y3z3—p303w4x3y3z3—pSUway4z3—|—
22323/42’3 +p20w2x2y423+

2w3:c2y4z3+p3v3w3x2y4z3+p302w4x2y4z3—p3v3w4x2y4z3—

pwa3y4Z3 +p2vwx3y4z3 +p2w2m3y4z3 _ p2vw2:c3y4z3 _ p4vw2:1:3y4z3+
2w3x3y4z3+p4v2w3x3y4z3—p3v3w3x3y4z3—p3v2w4x3y4z3+p3113w4x3y4z3+

p4vw2x4y4z3 o p4v2w3x4y4z3 +p2vw3y224 o p202w3y224 +psv3w4y224—

3w5y224 +p2vw2xy2z4 . p2vw3xy2z4 o p3vw3$y224 +p3vzw3xy2z4+
p3vw4xy2z4 o p3113w4xy2z4 o p302w5my2z4 +p3v3w5$y224 +p4v3w5xy224—

p4v4w51:y2z4+p31}w3:n2y224—p3v2w3m2y224+p4v3w4x2y224—p4v3w5x2y224—

203324 4 pPolutyS 2t — pPu

Prowleytt — pPPowte 2t + pPotwleyt 2t — pPulayt 2t + prowtnyt 2t
Powdzy? 2t — pPotudeyd st — 2030wt ey 2t + pPodwlteyt 2t + ptwlteyd 2t —

p4v4w4my324 +p3112w5xy3z4 _ p4v3w5xy3z4 +p4v4w5xy3z4 _ p2w2x2y3z4+

pPu
p302w x3y3z3+p303w
Polweyt P + pPwrtyt s — prowayt — pPw

Powayt 23 —2p3

p’v

p*v

p2vw3y3z4 —|—p2’U 3w4y324 +p2w2xy3z4—

p30w2x2y3z4—p302w2x2y3z4+p2w3x2y3z4—p3vw3x2y3z4+p3v2w3$2y3z4—
p3vw4x2yd24+p3U2w4x2y324+p4v2w4x2y324_2p4vdw4x2y3Z4+p4v4w4x2ydz4_
2,43 3.4 3,,5,.3,3.4 2 3 3,32, 4,4

wx Y’z —|—p3vw xy4z4—p302w :cy4z4+p w Tty z

2y4z4 +p4v2w3x2y4z4 —p4v3w3x2y4z4+

2w5x2y4z4+p403w5x2y4z4—

3az3y4z4+

2w4x3y4z4+p4v3w4x3y4z4+

4w4x3y4z4+p4v2w5x3y4z4—p4v3w5x3y4z4—p5v3w5x3y4z4+

4y424+p4v2w3x4y4z4+p502w4x4y4z4—p503w4x4y4z4—

p3vw2$2y5z4+p3vw3zx2y5z4—p4v2w4:ﬂ2y524+p4v3w4x2y524—p3w2x3y5z4+

p3vw2x3y5z4—|—p4vw2x3y5z4—p4v2w2x3y5z4—p4vw3x3y5z4—I—p4v3w3x3y5z4+

p402w4x3y524—p4vgw4x3y5z4—p5Ugw4x3y5z4+p5vgw5x3y5z4—p4vw2x4y5z4+

p4vw3x4y5z4 —p5v2w4x4y5z4 +p5v3w4x4y5z4 _p3v2w4y325 +p3v3w5y3z5+

p4vw3:1:y3z5 —p402w3xy3z5 _ p4vw4xy3z5 +p31)2w4xy325 +p4v2w4xy3z5—

p4v w z Y’z +p4v
2p31)w3a:2y4z4 + pngwgaj
p4v2w4x2y4z4—p4v3w4x2y4z4+p5v4w4x2y4z4—p4v

4w5x2y4z4 +p3w2x3y4z4—png2x3y4z4 +p4v2w2x3y4z4—p3w

3y4z4+p4vw3$3y4z4—2p4v2w3w3y4z4—p4v

v
pPowdz
PPrdutadyt Py

Pyt A —ptouwds
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p3v3w5:vy3z5—p5vgw5xy325+p5v4w5azy3z5—|—p5v3w6:ﬂy3z5—p5v4w6xy3z5—
p4vw3x2y3z5+p4v2w3a§2y3z5+p4vw4x2y3z5—2p4v2w4332y3z5+p4v3w5a:2y3z5+

p503w5x2y3z5—p5v4w5x2y3z5—p503w6x2y3z5+p5v4w6x2y3z5+p402w4x3y3z5—

Po3uSe3B20 — plowdeyts® + protulnyts® + plowteytz® — poZudeytsS+
PPodwdeyts’ — pPotuSryts’ — Putayts’ + pPowtsyts’ + prowtslytsS—
20882yt P p Pl eyt P —ptwtey P +pP v wie 2yt —pP vty 4

p4v2w5x2y4z5—p5v3w5:c2y4z5—|—p5v4w5x2y4z5+p5v2w4x3y4z5—p5v2w5x3y4z5+

PP a3yt —pSutuwdadyt 25 —piutuwtaty st +pP il oty —prowtayB 20+

p4v2w4x2y5z5 _ p5v?’w4x2y5z5 +p4v2w5a:2y5z5 _ p4v3w5x2y5z5+

4w5x2y5z5+p3w3$3y5z5—p3vw3x3y5z5—p5vw3x3y5z5 +p4v2w3933y5z5+

p5vzw3x3y5z5 _p4v3w3$3y525 +p5vw4$3y525 —p502w4x3y5z5+

p5v4w4x3y5z5 _ p4v2w5x3y525 +p4v3w5x3y525 +p6v3w5x3y5z5—

p5v4w5x3y5z5 _ p6v4w5m3y525 _ p603w6

p5vw3x4y5z5 _ p5v2w3$4y525 _ p5vw4$4y525 _|_p5,02w4$4y5z5_|_

p502w5x4y525—p5vgw5x4y525—p603w5x4y5z5+p604w5x4y5z5+p5vw3az3y6z5—

2w3x3y6z5+p603w4x3y6z5—p603w5x3y6z5—p5vw3x4y6z5+p5v2w3x4y6z5—

3w4x4y6z5+p6v3w5$4y625—p4v2w4xy426+p4v2w5xy426—p5v3w6xy426+

2y426+p4v2w4:1;2y426—|—p5v2w4:c2y426—p5v3w4m2y426—

2,w5x2y4z6+p5v4w5x2y4Z6+p5vdw6x2y4z6_p5v4w6x2y4z6_p6v4w6x2y4z6+

p6v4w7:c2y4z6—p502w4:c3y4z6+p502w5x3y4z6—p6v3w6x3y4z6+p6v4w6x3y4z6+

p4vw4x2y5z6—p5v2w4x2y5z6+p5v3w4x2y526—p4v2w5x2y526+p5v3w5x2y526—
4w5x2y5z6+p5v2w5x3y5z6—p5v3w5x3y5z6+p6v4w6x3y5z6—p6v4w7x3y5z6+

2w5x4y5z6—l—p6v3w6x4y5z6—p6v4w6x4y5z6—p5vw4x3y626+

3w4$3y6Z6—|—p6v4w5:E3y626—|-p61)3w6$3y626—p6v4w6$3y626+

p5vw4x4y626—p5v2w4x4y626—p6v2w4x4y626+p6v3w4x4y626+p6v3w5x4y626—

p6U4w5l‘4y6Z6—p61)3w61‘4y626—|—p6v4w6$4y626—|—p61}2w4$4y7z6—p6U3w5ZE4y7Z6—|—

p5v2w5$2y527—p503w5x2y5z7+p6U4w6$2y527—p6v4w7$2y5z7—p5v2w5x3y5z7+

p503w5:1:3y527—p6U4w6x3y5Z7+p6U4w7x3y527—p703w6x3y6z7+p7v4w7x3y6z7+

p602w5x4y627—p6Ugw5x4yﬁz7+p7v4w6x4yﬁz7—p7v4w7x4y627—p6v2w5x4y7z7+

3w5x4y7z7+p703w6x4y7z7—p7v4w6x4y7z7+p703w6x3y628—p7v4w7x3y6z8—

3w6x4y7z8 + p7v4w7x4y7z8

2p41)

p°v

x3y525 +p6v4w6m3y5z5+

v
PP
pPrtuwlzyt b —prowta

p°v

p’v
Potwtahy gy

PPv2uwady® 28 —pSy

PP

plv



