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Abstract. Let π be a cuspidal automorphic representation of GL(2, AK). Suppose there exists a single
non-vanishing nth order twist of the L-series associated to π at the center of the critical strip. We use the

method of multiple Dirichlet series to establish that there exist infinitely many such non-vanishing nth order

twists of the L-series of the representation at the center.

1. Introduction and Statement of the Main Result

Let E be an elliptic curve defined over a number field K. The behavior of the rank of the L-rational

points E(L) as L varies over some family of algebraic extensions of K is a problem of fundamental interest.

The conjecture of Birch and Swinnerton-Dyer provides a means to investigate this problem via the theory

of automorphic L-functions.

Assume that the L-function of E coincides with the L-function L(s, π) of a cuspidal automorphic repre-

sentation of GL(2) of the adele ring AK . Let L/K be a finite cyclic extension and χ a Galois character of this

extension. Then the conjecture of Birch and Swinnerton-Dyer equates the rank of the χ-isotypic component

E(L)χ of E(L) with the order of vanishing of the twisted L-function L(s, π ⊗ χ) at the central point s = 1
2 .

In particular, the χ-component E(L)χ is finite (according to the conjecture) if and only if the central value

L( 1
2 , π ⊗ χ) is non-zero.

Thus it becomes of arithmetic interest to establish non-vanishing results for central values of twists of

automorphic L-functions by characters of finite order. For quadratic twists this problem has received much

attention in recent years. In this paper we address this question for twists of higher order. Our main result

is contained in the following theorem.

Theorem 1.1. Fix a prime integer n > 2, a number field K containing the nth roots of unity, and a suffi-

ciently large finite set of primes S of K. Let π be a self-contragredient cuspidal automorphic representation
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of GL(2,AK) which has trivial central character and is unramified outside S. Suppose there exists an idèle

class character χ0 of K of order n unramified outside S such that

L( 1
2 , π ⊗ χ0) 6= 0.

Then there exist infinitely many idèle class characters χ of K of order n unramified outside S such that

L( 1
2 , π ⊗ χ) 6= 0.

We refer the reader to Section 2 for the definition of the finite set S. Fearnley and Kisilevsky have

proven a related result for the L-function L(s,E) of an elliptic curve defined over Q. In [5] they show that

if the algebraic part Lalg( 1
2 , E) of the central L-value is nonzero mod n, then there exist infinitely many

Dirichlet characters χ of order n such that L( 1
2 , E, χ) 6= 0. We note that if L( 1

2 , E) 6= 0 then the hypothesis

Lalg( 1
2 , E) 6≡ 0 mod n is satisfied for all sufficiently large primes n. We find it interesting (and frustrating!)

that, although the methods of [5] (based on the arithmetic of modular symbols) are completely different

from the methods of this paper, both our result and theirs require some nonvanishing assumption. An

unconditional result in the cubic case (n = 3) has recently been established in [1]. We comment more on

this below.

The quadratic case (n = 2) is particularly accessible because, by the results of Waldspurger [17], Kohnen

and Zagier [13], and others, the existence of a quadratic character χ such that L( 1
2 , π ⊗ χ) 6= 0 implies

the existence of a metaplectic cuspidal automorphic representation π̃ on the double cover of GL(2,AK)

corresponding to π. The correspondent π̃ is related to π in the following way. If L(w, π̃ ⊗ π̃) denotes the

Rankin-Selberg convolution of π̃ with itself then

(1.1) L(w, π̃ ⊗ π̃) =
∑
d6=0

L( 1
2 , π ⊗ χ

(2)
d0

)Pd(π)
Ndw

,

up to corrections at a finite number of places. Here d = d0d
2
2, with d0 square free, the χ(2)

d0
are quadratic

characters with conductor d0, and the Pd(π) are certain non-zero correction factors which are trivial when

d2 = 1. We defer a precise definition of such objects until Section 2. These correction factors are small in

the sense that, for any fixed d0,

(1.2) the sum
∑
d2 6=0

Pd0d22(π)
Nd2w

2

converges absolutely for any w with Re(w) > 1
2 .
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This connection between π and π̃ causes the existence of one non-vanishing quadratic twist to imply the

existence of infinitely many d0 such that L( 1
2 , π ⊗ χ

(2)
d0

) 6= 0. This is because if π̃ 6= 0 then L(w, π̃ ⊗ π̃) has

a pole at w = 1. However the right hand side of (1.1) will converge at w = 1 if there are only finitely many

non-vanishing quadratic twists.

For n > 2 there are no known results relating nth order twists of the L-series of π to Fourier coefficients

of other automorphic objects. In fact even a conjectural generalization of the results of Waldspurger to

the case n > 2 remains mysterious. However, in this paper we describe how a generalization of (1.1) can

still be found by associating π to a certain metaplectic form. This generalization is at least sufficient to

answer the question of whether one non-vanishing twist of a given order implies the existence of infinitely

many non-vanishing twists of that order. It may ultimately shed some light on the question of the correct

generalization of Waldspurger’s results, but at the moment this aspect remains opaque.

We will describe in detail a Dirichlet series that has the rough form

(1.3) Z(n)(s, w) =
∑
d6=0

L(s, π ⊗ χ
(n)
d0

)ε(d0)Pd(s, π)
Ndw

,

where d = d0d
n
n with d0 n

th power-free (see Section 2). Here ε(d0) denotes an nth order Gauss sum corre-

sponding to the character χ(n)
d0

and Pd(s, π) again denotes certain correction factors which are trivial when

dn = 1. These are also small, in the sense that for Re(s) ≥ 1
2 ,

(1.4) the sum
∑
dn 6=0

Pd0dn
n
(s, π)

Ndnwn
converges absolutely for any w with Re(w) >

1
n

+
1
9
.

The fraction 1
9 comes from the bound of Kim and Shahidi [12].

The series Z(n)(s, w) is “natural” for the following reasons. First, when n = 2 and π̃ exists, Z(n)( 1
2 , w)

agrees at almost all places with the Rankin-Selberg convolution L(w, π̃ ⊗ π̃). Second, after an interchange

in the order of summation, it has an automorphic interpretation as a Rankin-Selberg convolution of π with

an Eisenstein series on the n-fold cover of GL(2). In the case n = 2 , this automorphic interpretation of

Z(n)(s, w) was exploited by Friedberg and Hoffstein [8]. In the case n = 3 the automorphic interpretation

was used by She [16] to establish a non-vanishing result for cubic twists of one particular π.

In this paper we do not use the automorphic interpretation of Z(n)(s, w). Instead we take the far easier

approach of the method of multiple Dirichlet series (discussed in brief at the conclusion of this section).
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Using this method we establish an analytic continuation and exhibit a finite group of functional equations

for Z(n)(s, w) in the two variables s and w. Specializing to s = 1
2 , we obtain a Dirichlet series Z(n)( 1

2 , w)

with a functional equation in w. The condition (1.4) implies that if L( 1
2 , π⊗χ

(n)
d0

) 6= 0 for only finitely many

d0 then Z(n)( 1
2 , w) must converge for Re(w) > 1

n + 1
9 . We then show that for n ≥ 3 (i.e. 1

n + 1
9 <

1
2 ), this

is incompatible with the functional equation. It immediately follows that the existence of one non-vanishing

twist implies the existence of infinitely many.

The method can easily be taken a bit further to establish a mean value result of the form, for Re(s) > 1
2 ,

(1.5)
∑

L(s, π ⊗ χ
(n)
d0

) ε(d0)Pd( 1
2 , π)W

(
Nd
X

)
∼ c(s, π)X

1
2+

1
n ,

where W is any suitable smoothing function. The constant c(s, π) is a very interesting function; it is a simple

multiple of L(s + 1
2n , π ⊗ θ(n)), the Rankin-Selberg convolution of π with the theta function on the n-fold

cover of GL(2), evaluated at the point s+ 1
2n . When n = 2 and s = 1

2 , the series L( 3
4 , π⊗ θ

(2)) is essentially

the symmetric square L-series of π evaluated at 1, the edge of the critical strip. Thus in this case the L-series

does not vanish, and simple conditions on the sign of the functional equation of π determine whether or not

c( 1
2 , π) equals zero. Because of this, unconditional mean value and non-vanishing results can be derived, as

was done in [8]. For n > 2, however, the L-series L( 1
2 + 1

2n , π ⊗ θ(n)) does not have an Euler product and

is evaluated at a point inside the critical strip. Thus the question of vanishing becomes quite subtle. It

is because of this that we cannot yet eliminate the possibility that the entire class of twists L( 1
2 , π ⊗ χ

(n)
d0

)

vanishes identically. In [1] a different multiple Dirichlet series is constructed, specific to the case n = 3. In

this case the (cubic) Gauss sum is removed from the numerator and the constant c(s, π) becomes essentially

L(3s, π, sym3). As a consequence unconditional non-vanishing and mean value results can be obtained in

the case n = 3. The question of generalizing this method to n ≥ 4 remains open and extremely interesting.

We close the introduction with a brief overview of the method of multiple Dirichlet series. Multiple

Dirichlet series are functions of several complex variables of the form∑
m1,...,mr

a(m1,m2, . . . ,mr)
ms1

1 m
s2
2 · · ·msr

r
.

These can be considered, according to the order of summation, as a Dirichlet series in any one of the variables

whose coefficients are again Dirichlet series. For example, in (1.3) the multiple Dirichlet series Z(n)(s, w) is

a Dirichlet series in the variable w with numerator L(s, π⊗χ(n)
d0

)ε(d0)Pd(s, π), a family of Dirichlet series in
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the variable s. If a component Dirichlet series possesses a functional equation, then the multiple Dirichlet

series inherits a corresponding functional equation. Interchanges in the order of summation may reveal

new families of Dirichlet series in the numerator with new functional equations. Interchanging the order of

summation in (1.3) produces a Dirichlet series formed from nth order Gauss sums. Such series arise in the

theory of Eisenstein series on the n-fold cover of GL2 as introduced by Kubota in [14], and extended by

Patterson [15] and Kazhdan-Patterson [11].

Classical convexity estimates on the constituent Dirichlet series give a region of absolute convergence for

the multiple Dirichlet series. Once exact functional equations are obtained, one can apply them to the domain

of convergence to obtain a new domain which has a non-empty intersection with the original. This provides

the analytic continuation to the union of the original domain and its translates. An analytic continuation to

the convex hull of this union follows from a convexity theorem for several complex variables. In the case of

Z(n)(s, w), we will show that we obtain a region whose convex hull is all of the complex space C2.

This approach was first detailed by Bump, Friedberg, and Hoffstein in [2] and [3] where instances of

multiple Dirichlet series possessing these properties were catalogued. Fisher and Friedberg [6] generalized

these arguments to quadratic twists of automorphic forms on GL(2) over arbitrary function fields. This

method was also carried out by Friedberg, Hoffstein and Lieman [9] on a multiple Dirichlet series whose

coefficients were weighted nth order Dirichlet L-series in order to determine mean-value estimates for these

L-series. Finally, see [1] for a different and considerably more complicated construction in the case n = 3

and GL(2).

The authors would like to thank Sol Friedberg and Adrian Diaconu for many helpful discussions.

2. Preliminaries and Outline of Method

Fix n > 2 and let K be a number field containing the nth roots of unity. Let O denote the ring of

integers of K. Let π be a cuspidal automorphic representation of GL(2,AK). Let Sf be a finite set of

non-archimedean places such that Sf contains all places dividing n, the ring of Sf -integers OSf
has class

number 1, and π is unramified outside Sf . Let S∞ denote the set of archimedean places and let S = Sf ∪S∞.

Let
(
a
∗
)

be the power residue symbol attached to the extension K( n
√
a) of K. We extend the nth power

residue symbol as in Fisher and Friedberg [6]. We review the definition.
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For each place v, let Kv denote the completion of K at v. For v nonarchimedean, let Pv denote the

corresponding ideal of O, and let qv = NPv denote its norm. Let C =
∏
v∈Sf

Pnv
v with nv ≥ 1 sufficiently

large so that if a ∈ Kv, and ordv(a − 1) ≥ nv, then a ∈ (K×
v )n. Let HC be the ray class group modulo C

and let RC = HC⊗Z/nZ. Write the finite group RC as a direct product of cyclic groups, choose a generator

for each, and let E0 be a set of ideals of O prime to S which represent these generators. For each E0 ∈ E0

choose mE0 ∈ K× such that E0OSf
= mE0OSf

. Let E be a full set of representatives for RC of the form∏
E0∈E0

E
nE0
0 , with nE0 ∈ Z. If E =

∏
E0∈E0

E
nE0
0 is such a representative, then let mE =

∏
E0∈E0

m
nE0
E0

.

Note that EOSf
= mEOSf

for all E ∈ E . For convenience we suppose that O ∈ E and mO = 1.

Let J (S) denote the group of fractional ideals of O coprime to Sf . Let I, J ∈ J (S) be coprime. Write

I = (m)EGn with E ∈ E , m ∈ K×, m ≡ 1 mod C, and G ∈ J (S) such that (G, J) = 1. Then as in [6],

the nth power residue symbol
(
mmE

J

)
is defined, and if I = (m′)E′G′n is another such decomposition, then

E′ = E and
(
m′mE

J

)
=
(
mmE

J

)
.

In view of this define the nth power residue symbol
(
I
J

)
by
(
I
J

)
=
(
mmE

J

)
. If I is nth-power-free, we

denote by χI the character χI(J) =
(
I
J

)
. This character depends on the choices above, but we suppress this

from the notation.

Proposition 2.1 (Reciprocity). [6] Let I, J ∈ J (S) be coprime, and α(I, J) = χI(J)χJ(I)−1. Then α(I, J)

depends only on the images of I and J in RC .

Let I(S) denote the integral ideals prime to Sf . Let π be as above and let LS(s, π⊗χJ) be the L-function

for π twisted by the character χJ , with the places in S removed. (Note that the Euler factor is also 1 at

the places dividing J .) If ξ is any idèle class character then the twisted L-function L(s, π ⊗ ξ) satisfies a

functional equation

(2.1) L(s, π ⊗ ξ) = ε(s, π ⊗ ξ)L(1− s, π̃ ⊗ ξ−1),

where ε(s, π ⊗ ξ) is the epsilon factor of π ⊗ ξ.

Proposition 2.2. Let E, J ∈ O(S) be nth-power-free with associated characters χE , χJ of conductors fE , fJ

respectively. Suppose that χJ = χEχI with I ∈ K×, I ≡ 1 mod C. Then

(2.2) ε(s, π ⊗ χJ) = ε(1/2, χI)2 χπ(fJ/fE) (NfJ/NfE)2(1/2−s) ε(s, π ⊗ χE).



NON-VANISHING TWISTS OF GL(2) AUTOMORPHIC L-FUNCTIONS 7

Here ε(1/2, χI) is given by a (normalized) nth order Gauss sum, as in Tate’s thesis. We henceforth assume

that π has trivial central character (and is self-contragredient). Let

LS(s, π) =
∏
v/∈S

(1− αvq
−s
v )−1 (1− βvq

−s
v )−1 =

∑
I∈I(S)

a(I)
(NI)s

,

where αv and βv are the Satake parameters associated to π at v. For J in I(S), write J = J0J
n
n , with J0

the nth power free part of J . For I in I(S), let Ĩ represent the part of I coprime to J0.

For ideals I and J , define the function G(I, J) by

G(I, J) =
∏
v

ordv(I)=α
ordv(J)=β

G(Pαv , P
β
v ),

where, for α, β ≥ 0,

(2.3) G(Pαv , P
β
v ) =



1 if β = 0
q
β/2−1
v (qv − 1) if α ≥ β, β ≡ 0(n), β > 0
−qβ/2−1

v if α = β − 1, β ≡ 0(n), β > 0
q
(β−1)/2
v if α = β − 1, β 6≡ 0(n), β > 0

0 otherwise.

To simplify notation, let ζ denote the Dedekind zeta function of K and ζS the zeta function with the places

in S removed.

Define the following pair of multiple Dirichlet series:

(2.4) Z1(s, w;π, ψ1, ψ2) = ζS(nw − n/2 + 1)
∑

I,J∈I(S)

a(I)ψ1(I)ψ2(J)G(I, J)χJ0
(Ĩ )ε(J0)

(NI)s(NJ)w
,

and

(2.5) Z2(s, w;π, ψ1, ψ2) = ζS(nw − n/2 + 1)
∑

I,J∈I(S)

a(I)ψ1(I)ψ2(J)G(I, J)χJ0(Ĩ)ε(J0)
(NI)s(NJ)w

,

where ψ1, ψ2 are two idèle class characters of RC (hence of order dividing n and conductor dividing C).

The notation ε(J0) simply abbreviates ε( 1
2 , χJ0). (Note that Z1 and Z2 are essentially dual objects up to

conjugation of χJ0 and ε(J0).)

By summing first over J , we have

(2.6) Z1(s, w;π, ψ1, ψ2) =
∑

I∈I(S)

a(I)ψ1(I)D(w, I, ψ2)
(NI)s

,
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where

(2.7) D(w, I, ψ2) = ζS(nw − n/2 + 1)
∑

J∈I(S)

ψ2(J)G(I, J)χJ0
(Ĩ)ε(J0)

(NJ)w

is a Dirichlet series obtained from the Fourier coefficient of an Eisenstein series defined on an appropriately

restricted congruence subgroup Γ of the n-fold cover of GL(2). (This motivates the definition (2.3).) These

metaplectic Eisenstein series were first formulated by Kubota (cf. [14]) and were studied in further detail

by Kazhdan and Patterson in [11]. In particular, Kazhdan and Patterson exhibited a functional equation as

w 7→ 1 − w and determined the polar structure: D(w, I, ψ2) has possible simple poles at w = 1
2 ±

1
n and is

holomorphic elsewhere. (For a general introduction to the subject, we refer the reader to [10].)

Using the above theory together with one-variable convexity results, one sees that for every ε > 0

(2.8)
∣∣(w − 1

2 + 1
n )(w − 1

2 −
1
n )D(w, I, ψ2)

∣∣ <<ε max{1, (NI)(1−Re(w))/2+ε, (NI)1/2−Re(w)+ε}.

Hence, we can obtain a region of absolute convergence for our multiple Dirichlet series as a convolution of a

GL(2) automorphic L-series and the above series D(w, I, ψ2). That is, for i = 1, 2 we define

(2.9) Z̃i(s, w;π, ψ1, ψ2) = s(1− s)(w + 1
2 −

1
n )(w + 1

2 −
1
n )Zi(s, w;π, ψ1, ψ2),

and it follows from (2.8) that Z̃i(s, w;π, ψ1, ψ2) for i = 1, 2 converges absolutely and uniformly on compacta

(and uniformly bounded away from the boundary) for the region

(2.10) R′ = {(s, w)|Re(s) > max{ 10
9 ,

29
18 −

Re(w)
2 , 29

18 − Re(w)} }.

This is demonstrated carefully in Section 5.

Our multiple Dirichlet series have another fruitful interpretation upon interchanging the order of sum-

mation, so that the inner sum is over ideals I ∈ I(S). To present this form, first define the correction

polynomials Q(s, J ;π, χJ0
ψ1), for ideals J =

∏
v P

ordv(J)
v , by

(2.11) Q(s, J ;π, χJ0
ψ1) =

∏
v

ordv(J)=nγ

Q(s, Pnγv , χJ0
ψ1;π)

n−1∏
k=1

∏
v

ordv(J)=nγ+k

(
a(Pnγ+k−1

v )ψ1(P k−1
v )

q
(nγ+k−1)s−nγ+k−1

2
v

)
,

where

(2.12) Q(s, Pnγv , χ;π) = a(Pnγv )q
nγ
2 −nγs
v − a(Pnγ−1

v )χ(Pv)q
nγ
2 −(nγ+1)s
v

− a(Pnγ−1
v )χ(Pv)q

nγ
2 −1−(nγ−1)s
v + a(Pnγ−2

v )q
nγ
2 −1−nγs
v ,
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and where we make the convention that a(x) = 0 for all non-integral x. Then we will show the following

result in Section 3.

Proposition 2.3. In the region of absolute convergence R′ given in (2.10),

(2.13) Z1(s, w, π;ψ1, ψ2) = ζS(nw − n/2 + 1)
∑

J∈I(S)

ε(J0)ψ2(J)LS(s, π ⊗ χJ0
ψ1)

(NJ)w
Q(s, J ;π, χJ0

ψ1),

and

(2.14) Z2(s, w, π;ψ1, ψ2) = ζS(nw − n/2 + 1)
∑

J∈I(S)

ε(J0)ψ2(J)LS(s, π ⊗ χJ0ψ1)
(NJ)w

Q(s, J ;π, χJ0ψ1).

Given the results of Proposition 2.3, we can use upper bounds on the Fourier coefficients of our L-series

and the finite Dirichlet polynomials Q, together with standard one-variable convexity arguments, to show

that the functions Z̃i(s, w, π;ψ1, ψ2) for i = 1, 2 converge absolutely and uniformly on compacta in the region

R′′ = {(s, w)|Re(w) > max{1, 19
9 − Re(s), 2− 2 Re(s)} }.

Since R′ and R′′ have a non-empty intersection, we see that the functions Z̃i(s, w, π;ψ1, ψ2) for i = 1, 2

converge absolutely and uniformly on compacta in their union, given by

(2.15) R = {(s, w)|Re(w) > max{2− 2 Re(s), 19
9 − Re(s), 29

9 −
Re(s)

2 , 29
18 − Re(s)} }.

We use the two interpretations of the multiple Dirichlet series to exhibit functional equations as w 7→ 1−w

and s 7→ 1 − s. Translating the region R under these equations will lead to an analytic continuation. We

begin with the form of the series as a sum of metaplectic Eisenstein series as written in (2.6). By adding in

the contributions at the infinite places, we can state a precise formulation of the functional equation inherited

by the multiple Dirichlet series from the Eisenstein series. Define

(2.16) Γn(w) def=
[
(2π)−1/2nnw−

n
2 +1
]r2 n−1∏

i=1

Γ(w − 1
2

+
i

n
) |DK |nw−

n
2 +1

,

where DK denotes the discriminant of the field K and r2 is the number of pairs of complex embeddings. This

set of gamma factors comes directly from the Fourier analysis and multiplication formula for the gamma

function. Then Γn(w)D(w, I, ψ2) has a functional equation as w 7→ 1 − w, which we exploit to obtain the

following proposition.
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Proposition 2.4. In the region of absolute convergence R given in (2.15),

Γn(1−w)Z1(s+w− 1/2, 1−w;π, ψ1, ψ2)
∏
v∈Sf

(1− qn/2−1−nw
v ) =

∑
ξ

Φ(w,ψ2, ξ)Γn(w)Z1(s, w;π, ψ1ψ2ξ, ψ2),

where each Φ(w,ψ2, ξ) is a function of w which is bounded in vertical strips of bounded width. The sum is

taken over all characters ξ with conductor dividing C and order dividing n.

Proof: This follows as an immediate corollary of the functional equation for Γn(w)D(w, I, ψ2) given as

Corollary II.2.4 of [11]. Note the necessity of twisting by characters ψ1 and ψ2 so that as the functional

equation takes Eisenstein series to a linear combination of Eisenstein series at each cusp, the form of our

basic Dirichlet series remains the same. Our Φ(w, ξ) is then essentially a scattering matrix for this functional

equation.

Now equipped with one functional equation, we go in search of a second. By interchanging the order

of summation, decomposing the sums in (2.4) and (2.5) according to primes dividing J , we will view our

Dirichlet series as weighted sums of L-series in s associated to π. Thus our series inherit functional equations

as s 7→ 1 − s. To make this precise, we must first include the appropriate Gamma factors which complete

the L-series. Define ΓK(s) by

(2.17) ΓK(s) =
(
|DK |
(2π)r2

)s
Γ(s+ iν)r2Γ(s− iν)r2 ,

where again DK is the discriminant of K, r2 denotes the number of pairs of complex embeddings in our

totally complex field K, and 1
4 + ν2 is the eigenvalue corresponding to the automorphic representation π.

Proposition 2.5. In the region of absolute convergence R,

(2.18)
∏
v∈Sf

(
1− αvψ1(Pnv )

qn−nsv

)(
1− βvψ1(Pnv )

qn−nsv

)
ΓK(s)ζS(nw + 2ns− 3n

2 + 1)Z1(s, w, π, ψ1, ψ2)

=
∑
ξ∈R̂C

B(s;ψ1, ξ)ΓK(1− s)ζS(nw − n
2 + 1)Z2(1− s, w + 2s− 1;π, ψ1, ψ2ψ

2
1ξ)

where the product of functions ΓK(1− s)B(s;ψ1, ξ) is bounded in vertical strips of bounded width.

The proof is completed in Section 4. Because we will apply both functional equations to our multiple

Dirichlet series in order to obtain an analytic continuation, we would like to define Γ-factors at the infinite
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places which are invariant under both functional equations as s 7→ 1− s and w 7→ 1−w. Thus, according to

the previous propositions, we define

(2.19) Γ(s, w) = ΓK(s)ΓK(s+ w − 1/2)Γn(w)Γn(w + 2s− 1),

and define

(2.20) Z∗i (s, w;π, ψ1, ψ2) = Γ(s, w)ζS(nw + 2ns− 3n
2 + 1)Zi(s, w;π, ψ1, ψ2) for i = 1, 2.

The pair of functional equations from Propositions 2.4 and 2.5, repeatedly applied to a region of absolute

convergence, provide an analytic continuation to all of C2. This is demonstrated in Section 5. We will show

in Section 6 that the resulting expression is uniformly convergent in some right half-plane. The functional

equation together with this convergence will allow us to show in Section 7 that if there is a single nonvanishing

twist at s = 1
2 , there must in fact be infinitely many nonvanishing twists at s = 1

2 .

3. Interchanging the Order of Summation – A Proof of Proposition 2.3

Proof of Proposition 2.3: We give the proof for (2.13), noting that the proof of (2.14) follows identically.

Fix an ideal J in I(S) and decompose it according to J = J0J
n
n where J0 = J1J

2
2 . . . J

n−1
n−1 again denotes the

nth-power free part of J . Let v 6∈ S be a place such that ordv(J) = nγ, so that we may write J = Pnγv J ′

with (J ′, Pv) = 1. We must analyze the resulting object G(I, J).

Writing I = Pλv I
′ with (I ′, Pv) = 1, gives

∑
I∈I(S)

a(I)ψ1(I)ψ2(J)G(I, J)χJ0
(Ĩ)ε(J0)

(NI)s(NJ)w
=

∑
I′

ordv(I′)=0

a(I ′)ψ1(I ′)ψ2(J)G(I ′, J ′)χJ0
(Ĩ ′)ε(J0)

(NI ′)s(NJ ′)w
×

∑
λ≥0

a(Pλv )ψ1(Pλv )G(Pλv , P
nγ
v )χJ0

(Pλv )
(NPv)λs+nγw

.

We first evaluate the sum over λ. If γ = 0, the sum becomes

∑
λ≥0

a(Pλv )ψ1(Pλv )χJ0
(Pλv )

(NPv)λs
= L(v)(s, π ⊗ χJ0

ψ1),

where L(v)(s, π ⊗ χJ0
ψ1) denotes the Euler factor associated to the place v in the L-series.
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If γ ≥ 1, then using (2.3) we obtain∑
λ≥0

a(Pλv )ψ1(Pλv )G(Pλv , P
nγ
v )χJ0

(Pλv )

qλs+nγwv

= −
a(Pnγ−1

v )ψ1(Pnγ−1
v )χJ0

(Pnγ−1
v )

q
nγw+(nγ−1)s−nγ

2 +1
v

+
1

q
nγw−nγ

2 +1
v

∑
λ≥nγ

(qv − 1)a(Pλv )ψ1(Pλv )χJ0
(Pλv )

qλsv
.

(3.1)

We wish to sum this geometric series, pulling out a factor of L(v)(s, π ⊗ χJ0
ψ1). We must therefore write

the Fourier coefficients a(Pλv ) in terms of the vth Satake parameters. (Recall that for v 6∈ S, αvβv = 1 and

αv + βv = a(Pv).) We have

a(Pλv ) =
αλ+1
v − βλ+1

v

αv − βv
,

and

L(v)(s, π ⊗ χJ0
ψ1) =

(
1−

αvχJ0
(Pv)ψ1(Pv)
qsv

)−1(
1−

βvχJ0
(Pv)ψ1(Pv)
qsv

)−1

= (1− a(Pv)χJ0
(Pv)ψ1(Pv)q−sv + χJ0(Pv)ψ1(Pv)q

−2s
v )−1.

Substituting these definitions into the latter sum of (3.1) and evaluating the geometric sums, we have

∑
λ≥nγ

a(Pλv )ψ1(Pλv )χJ0
(Pλv )

qλsv
=

1
αv − βv

∑
λ≥nγ

αλ+1
v χJ0

(Pλv )ψ1(Pλv )
qλsv

−
∑
λ≥nγ

βλ+1
v

χJ0
(Pλv )ψ1(Pλv )
qλsv


=

1
αv − βv

[
αnγ+1
v

qnγsv
(1− αvχJ0

(Pv)ψ1(Pv)q−sv )−1 − βnγ+1
v

qnγsv
(1− βvχJ0

(Pv)ψ1(Pv)q−sv )−1

]
=
L(v)(s, π, χJ0

ψ1)
qnγsv

(
a(Pnγv )− a(Pnγ−1

v )χJ0
(Pv)ψ1(Pv)q−sv

)
.

Therefore, we may rewrite the entire equation (3.1) as

∑
λ≥0

a(Pλv )ψ1(Pλv )G(Pλv , P
nγ
v )χJ0

(Pλv )

qλs+nγwv

=
1

q
nγw+nγs−nγ

2 +1
v

[
−a(Pnγ−1

v )ψ1(Pv)χJ0(Pv) q
s
v

+(qv − 1)
[
a(Pnγv )− a(Pnγ−1

v )ψ1(Pv)χJ0
(Pv)q−sv

]
L(v)(s, π ⊗ χJ0

ψ1)
]

=
L(v)(s, π ⊗ χJ0

ψ1)

q
nγw+nγs−nγ

2 +1
v

·
(
−a(Pnγ−1

v )ψ1(Pv)χJ0(Pv) q
s
v

[
1− a(Pv)χJ0

(Pv)ψ1(Pv)q−sv

+χJ0(Pv)ψ1(Pv)q
−2s
v

]
+ (qv − 1)

[
a(Pnγv )− a(Pnγ−1

v )ψ1(Pv)χJ0
(Pv)q−sv )

])
.

Expanding in the second bracket, and using the relation

a(Pnγ−1
v )a(Pv) = (αv − βv)−1(αnγv − βnγv )(αv + βv) = a(Pnγv ) + a(Pnγ−2

v ),
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we find that the above expression equals

L(v)(s, π ⊗ χJ0
ψ1)

q
nγw+nγs−nγ

2 +1
v

[
qva(Pnγv )− a(Pnγ−1

v )χJ0
(Pv)ψ1(Pv)q1−sv

−a(Pnγ−1
v )χJ0(Pv)ψ1(Pv)q

s
v + a(Pnγ−1

v )a(Pv)
]
.

Putting it all together, we have∑
λ≥0

a(Pλv )ψ1(Pλv )G(Pλv , P
nγ
v )χJ0

(Pλv )

qλs+nγwv

=

=
L(v)(s, π ⊗ χJ0

ψ1)
qnγwv

[
a(Pnγv )q

nγ
2 −nγs
v − a(Pnγ−1

v )χJ0
(Pv)ψ1(Pv)q

nγ
2 −(nγ+1)s
v −

a(Pnγ−1
v )χJ0(Pv)ψ1(Pv)q

nγ
2 −1−(nγ−1)s
v + a(Pnγ−2

v )q
nγ
2 −1−nγs
v

]
.

Recall the convention that a(x) = 0 for all non-integral x. Then repeating the above process for all such

places v with Pv not dividing J0, we have for any fixed ideal J

(3.2)
∑
I

a(I)ψ1(I)ψ2(J)G(I, J)χJ0
(Ĩ)ε(J0)

(NI)s(NJ)w

=
∏
v

ordv(J)=nγ

L(v)(s, π ⊗ χJ0
ψ1)

qnγwv
Q(s, Pnγv , χJ0

ψ1;π)
∑
I

I|J∞0

a(I)ψ1(I)ψ2(J)G(I, J)χJ0
(Ĩ)

(NI)s(NJ0)w
,

where Q(s, Pnγv , χJ0ψ1;π) is as defined in (2.12).

We must now repeat this analysis for the remaining sum over I such that I|J∞0 . Let v be a place such

that Pv|J0. That is, ordv(J) = nγ + k, for some k ∈ {1, 2, . . . n− 1} and denote ordv(I) = λ. Then, writing

I = Pλv I
′ and J = Pnλ+k

v J ′, we have

G(I, J) = G(Pλv I
′, Pnγ+kv J ′) =

{
q

nγ+k−1
2

v G(I ′, J ′), if λ = nγ + k − 1
0, otherwise.

Moreover, in this case P̃v = (1) since Pv|J0, so χJ0(P̃v) = 1 Thus we may write

(3.3)
∑
I

I|J∞0

a(I)ψ1(I)ψ2(J)G(I, J)ε(J0)
(NI)s(NJ)w

=

(
a(Pnγ+k−1

v )ψ1(Pnγ+k−1
v )

q
(nγ+k−1)s+(nγ+k)w−nγ+k−1

2
v

) ∑
I′

I′|J∞0

a(I ′)ψ1(I ′)ψ2(J)G(I ′, J ′)χJ0
(Ĩ ′)ε(J0)

(NI ′)s(NJ ′)w
.

Repeating this for the remaining finite list of places v such that Pv|J0, we have

(3.4)
∑
I

I|J∞0

a(I)ψ1(I)ψ2(J)G(I, J)ε(J0)
(NI)s(NJ)w

= ε(J0)ψ2(J)
n−1∏
k=1

∏
v

ordv(J)=nγ+k

(
a(Pnγ+k−1

v )ψ1(Pnγ+k−1
v )

q
(nγ+k−1)s+(nγ+k)w−nγ+k−1

2
v

)
.
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Combining this result with the information from (3.2) and (2.12) and noting that our characters ψi have

order n, the original series for fixed J takes form

(3.5)
∑

I∈I(S)

a(I)ψ1(I)ψ2(J)G(I, J)χJ0
(Ĩ)ε(J0)

(NI)s(NJ)w
= ε(J0)ψ2(J)LS(s, π ⊗ χJ0

ψ1) ×

∏
v

ordv(J)=nγ

Q(s, Pnγv , χJ0
ψ1;π)

qnγwv

n−1∏
k=1

∏
v

ordv(J)=nγ+k

(
a(Pnγ+k−1

v )ψ1(P k−1
v )

q
(nγ+k−1)s+(nγ+k)w−nγ+k−1

2
v

)
.

Summing over each ideal J ∈ I(S), the result follows.

We will also have need of the following lemma.

Lemma 3.1. Let the notation be as above. The correction factor Q(s, J ;π, χJ0
ψ1) satisfies the following

functional equation in s:

(3.6) Q(s, J ;π, χJ0
ψ1) = (NJ2J

2
3 · · · Jn−2

n−1J
n
n )1−2sψ2(J2J

2
3 · · · Jn−2

n−1J
n
n )Q(1− s, J ;π, χJ0ψ1).

Proof: From the definition made in (2.12), one readily sees that at each prime ideal Pv with (Pv, J0) = 1,

Q(s, Pnγv , χJ0
ψ1;π) = (qnγv )1−2sQ(1− s, Pnγv , χJ0ψ1;π).

Moreover, for each of the prime ideals Pv with Pv|J0 for any choice of k, we have the identity(
a(Pnγ+k−1

v )ψ1(P k−1
v )

q
(nγ+k−1)s−nγ+k−1

2
v

)
= (qnγ+k−1

v )1−2sψ2
1(P k−1

v )

(
a(Pnγ+k−1

v )ψ1(P k−1
v )

q
(nγ+k−1)(1−s)−nγ+k−1

2
v

)
.

The lemma therefore follows by combining the above identities.

4. A Functional Equation as s 7→ 1− s: A Proof of Proposition 2.5

Recall from Proposition 2.3 that we have

Z1(s, w, π;ψ1, ψ2) = ζS(nw − n/2 + 1)
∑

J∈I(S)

ε(J0)ψ2(J)LS(s, π ⊗ χJ0
ψ1)

(NJ)w
Q(s, J ;π, χJ0

ψ1),

and

Z2(s, w, π;ψ1, ψ2) = ζS(nw − n/2 + 1)
∑

J∈I(S)

ε(J0)ψ2(J)LS(s, π ⊗ χJ0ψ1)
(NJ)w

Q(s, J ;π, χJ0ψ1),

where Q(s, J ;π, χJ0
ψ1) is the correction polynomial defined in (2.11). To facilitate the statement of the

results of this section, we extend the definitions of Z1 and Z2 to include arbitrary linear combinations of
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characters in place of ψ1 and ψ2. In particular for E ∈ E , let δE be the characteristic function of the class

E, and consider

(4.1) Z1(s, w;π, ψ1, δEψ2) = ζS(nw − n/2 + 1)
∑

J∈I(S)

J∼E

ε(1/2, J0)ψ2(J)LS(s, π ⊗ χJψ1)
(NJ)w

,

where for notational convenience, we put

(4.2) L(s, π ⊗ χJψ1) = L(s, π ⊗ χJ0
ψ1)Q(s, J ;π, χJ0

ψ1).

We determine the functional equation for this completed L-function in the following lemma.

Lemma 4.1. With the notation as above,

(4.3) L(s, π ⊗ χJψ1) = ε( 1
2 , χI0)

2 ε(s, π ⊗ χEψ1)ψ2
1

(
JCE
fE

)(
NJCE
NfE

)1−2s

L(1− s, π ⊗ χJψ1).

Proof: From (2.1), we have L(s, π⊗χJ0
ψ1) = ε(s, π⊗χJ0

ψ1)L(1− s, π⊗χJ0ψ1). We will evaluate the factor

ε(s, π⊗χJ0
ψ1) = ε(s, (π⊗ψ1)⊗χJ0

) using Proposition 2.2. Write J0 = I0E, where E represents the class of

J0 in RC , and where I0 ≡ 1 mod C. The conductor of χJ0 is given by fJ0 = J1J2 · · · Jn−1CE , where CE is a

constant depending only on the class E. The central character of π is trivial, therefore the central character

of π ⊗ ψ1 is ψ2
1 . Thus we have

(4.4) ε(s, π ⊗ χJ0
ψ1) = ε( 1

2 , χI0)
2 ψ2

1

(
J1 · · · Jn−1CE

fE

)(
NJ1 · · · Jn−1CE

NfE

)1−2s

ε(s, π ⊗ ψ1χE)

The lemma then follows by combining the above with the functional equation for Q(s, J ;π, χJ0
ψ1) given in

Lemma 3.1.

We are now ready to demonstrate the functional equation for Z1 as s 7→ 1 − s. The functional equation

in Z2 can be shown completely analogously.

Proof of Proposition 2.5: Using Lemma 4.1, together with the fact that

ε(
1
2
, χI0)

2 ε(
1
2
, χJ0) = ε(

1
2
, χJ0

) ε(
1
2
, χE)2,

we see that

(4.5) Z1(s, w;π, ψ1, δEψ2)

= A(E, s)
∑

J∈I(S)

J∼E

ε(1/2, J0)ψ2ψ
2
1(J)LS(1− s, π ⊗ χJ0ψ1)
(NJ)w+2s−1

∏
v∈S

L(v)(1− s, π ⊗ χJ0ψ1)
L(v)(s, π ⊗ χJ0

ψ1)
,
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where

A(E, s) =
(

NCE
NfE

)1−2s

ψ2
1

(
CE
fE

)
ε(1/2, χE)2ε(s, π ⊗ ψ1χE).

To proceed further, multiply both sides of (4.5) by
∏
v∈Sf

1
L(v)(n− ns, π ⊗ ψn1 )

. Then

L(v)(1− s, π ⊗ χJ0ψ1)
L(v)(n− ns, π ⊗ ψn1 )

=

[
1 +

αvχJ0ψ1(Pv)
q1−sv

+ · · ·+ αn−1
v χJ0ψ1(Pn−1

v )

q
(n−1)(1−s)
v

]

×

[
1 +

βvχJ0ψ1(Pv)
q1−sv

+ · · ·+ βn−1
v χJ0ψ1(Pn−1

v )

q
(n−1)(1−s)
v

]
.

Hence for each J and each v ∈ Sf the term

L(v)(1− s, π ⊗ χJ0ψ1)
L(v)(n− ns, π ⊗ ψn1 )

1
L(v)(s, π ⊗ χJ0

ψ1)

becomes a finite Laurent polynomial in qsv whose dependence on J is through terms of the form χJ0(Pv).

Since v ∈ Sf and J is in a fixed class E of RC , we have χJ0(Pv) = ξv(E) for some character ξv of RC .

Similarly, the quotient

(4.6)
∏
v∈S∞

L(v)(1− s, π ⊗ χJ0ψ1)
L(v)(s, π ⊗ χJ0

ψ1)
=

ΓK(1− s)
ΓK(s)

,

where ΓK(s) is defined as in (2.17), is independent of J.

Since

Z∗1 (s, w;π, ψ1, ψ2) = Γ(s, w)ζS(nw + 2ns− 3n
2 + 1)Z1(s, w;π, ψ1, ψ2),

where we recall that Γ(s, w) is the complete set of Gamma factors defined in (2.19), we conclude that

∏
v∈Sf

(
1− αvψ1(Pnv )

qn−nsv

)(
1− βvψ1(Pnv )

qn−nsv

)
Z∗1 (s, w, π, ψ1, ψ2δE) =

A(s;ψ1, E)Z∗2 (1− s, w + 2s− 1;π, ψ1, ψ2ψ
2
1δE).

Moreover, the functions A(s;ψ1, E) are finite Laurent polynomials in NJs. Summing over E , we find that∏
v∈Sf

(
1− αvψ1(Pnv )

qn−nsv

)(
1− βvψ1(Pnv )

qn−nsv

)
Z∗1 (s, w, π, ψ1, ψ2) =

∑
E∈E

Z∗1 (s, w, π, ψ1, ψ2δE)

is equal to ∑
ξ

B(s;ψ1, ξ)Z∗2 (1− s, w + 2s− 1;π, ψ1, ψ2ψ
2
1ξ)

where B(s;ψ1, ξ) is a linear combination of the A(s;ψ1, E).
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5. Analytic Continuation

We wish to analytically continue the functions Z̃i(s, w;π, ψ1, ψ2) for i = 1, 2 to C2, for each choice of ψ1

and ψ2. This will be achieved using the functional equations for the Z∗i , along with properties of the series

D(w, I, ψ2) and the Dirichlet series L(s, π ⊗ χdψ1). As above, we will restrict our attention to Z̃1, as the

arguments for Z̃2 will be almost identical.

First, we consider the expression for Z1(s, w;π, ψ1, ψ2) given in (2.6). Using the bound |a(I)| �ε (NI)1/9+ε

for the Fourier coefficients, as well as the bound given in (2.8), we see that Z̃1(s, w;π, ψ1, ψ2) converges

absolutely and uniformly in the region of C2 satisfying Re(w) > 1 and Re(s) > 10
9 .

Next, we examine the behavior of Z̃1(s, w;π, ψ1, ψ2) when Re(s) ≤ −1/9, utilizing the expression for

Z1(s, w;π, ψ1, ψ2) given in (2.13). It will be convenient to work with this series as

Z1(s, w;π, ψ1, ψ2) =
∑
E∈RC

Z1(s, w;π, ψ1, δEψ2),

with Z1(s, w;π, ψ1, δEψ2) as given in (4.1). The full Dirichlet series L(s, π ⊗ χJψ1) satisfies the functional

equation given in (4.3). This functional equation involves gamma factors, as we have

(5.1) L(s, π ⊗ χJ0
ψ1) =

∏
v

L(v)(s, π ⊗ χJ0
ψ1) = ΓK(s)A(s)LS(s, π ⊗ χJ0

ψ1),

where A(s) =
∏
v∈Sf

L(v)(s, π ⊗ χJ0
ψ1). Combining (5.1) with (4.3), we obtain

(5.2) LS(s, π ⊗ χJψ1) =
ΓK(1− s)

ΓK(s)
A(1− s)
A(s)

B(s,E)(NJ)1−2sLS(1− s, π ⊗ χJψ1),

where we put

B(s,E) = ε( 1
2 , χI0)

2ε(s, π ⊗ χEψ1)ψ2
1

(
JCE
fE

)(
NCE
NfE

)1−2s

.

We set s = −1/9 +σ+ it in (5.2) and examine the factors on the right, as |t| → ∞. For the Gamma factors,

using a simplified version of Stirling’s formula given by

|Γ(σ + it)| ∼ |t|σ−1/2exp(−π|t|) as |t| → ∞,

we see that ∣∣∣∣ ΓK(10/9− σ − it)
ΓK(−1/9 + σ + it)

∣∣∣∣ ∼ ( |DK |
(2π)r2

|t2 − ν2|r2
)11/9−2σ

where ν is the constant given in (2.17). As |t| → ∞, we therefore have∣∣∣∣ ΓK(10/9− σ − it)
ΓK(−1/9 + σ + it)

∣∣∣∣ ∼M |t|(22/9−4σ)r2
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for some positive constant M . The factor
∣∣∣ A( 10

9 −σ−it)
A(−1

9 +σ+it)

∣∣∣ is a finite polynomial in powers of qσv , hence it is

independent of t. Finally, the factor LS( 10
9 − σ − it, π ⊗ χJψ1) is bounded as a function of t, since the full

L-series is absolutely convergent when s = 10
9 . Thus we see that LS(−1/9+σ+ it, π⊗χJψ1) has polynomial

growth as a function of t, for fixed σ < 0.

For Re(s) ≤ −1/9, we therefore have

|Z1(s, w;π, ψ1, ψ2)| �ε c(σ)|t|(22/9−4σ)r2
∑
E∈RC

∑
J∈I(S)
J∼E

1
(NJ)Re(w)+2σ−11/9+ε

,

where c(σ) is a constant independent of t, given by c(σ) = max
E∈RC

{c(σ,E)}, with

c(σ,E) =
∣∣∣∣ A( 10

9 − σ − it)
A(−1

9 + σ + it)

∣∣∣∣ · ∣∣B(−1
9 + σ + it)

∣∣ ·M.

From this we see that Z̃1(s, w;π, ψ1, ψ2) converges absolutely and uniformly on compacta in the region

satisfying Re(s) < −1/9 and Re(w) > 2− 2 Re(s). Now by applying a generalized version of the Phragmén-

Lindelöf Theorem, we see that for s with real part between −1/9 and 10/9, Z̃1 is absolutely and uniformly

convergent, provided Re(w) > 19/9 − Re(s). Therefore, our region of convergence for Z̃1(s, w;π, ψ1, ψ2) is

the region R′′ = {(s, w)|Re(w) > max{1, 19
9 − Re(s), 2− 2 Re(s)} }.

To obtain a second region of convergence for Z̃1, we again consider the expression for Z1 in terms of

D(w, I, ψ2), as given in (2.6). If Re(w) < 0, then (2.8) gives

|(w − 1
2 + 1

n )(w − 1
2 −

1
n )D(w, I, ψ2)| �ε (NI)1/2−Re(w)+ε,

hence we see that

|Z̃1(s, w;π, ψ1, ψ2)| �ε

∑
I∈I(S)

(NI)1/9+ε(NI)1/2−Re(w)

(NI)s
=

∑
I∈I(S)

1
(NI)s+Re(w)−11/18+ε

.

Consequently, the initial region of convergence of Z̃1(s, w;π, ψ1, ψ2), i.e. Re(w) > 1 and Re(s) > 10
9 ,

is extended to include the region of C2 satisfying Re(w) < 0 and Re(s) > 29/18−Re(w). Then by a

second application of the Phragmén-Lindelöf theorem, we see that Z̃1(s, w;π, ψ1, ψ2) converges absolutely

and uniformly on compact in the region R′ = {(s, w)|Re(s) > max{ 10
9 ,

29
18 −

Re(w)
2 , 29

18 − Re(w)} }.

These regions overlap, which means that Z̃1(s, w;π, ψ1, ψ2) converges on their union, R = R′ ∪ R′′.

By an almost identical argument, Z̃2(s, w;π, ψ1, ψ2) also converges on the region R. Now we may apply

the functional equations for the Zi, represented for convenience as α : (s, w) → (1 − s, w + 2s − 1) and
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β : (s, w) → (s+w− 1/2, 1− s), to extend this region of convergence. Applying the transformation α to the

region of convergence R, we obtain a region which overlaps R, and when we take the convex hull of their

union, we obtain the half-plane {(s, w)|Re(s) > 29
18 − Re(w)}.

Finally, applying the transformation β to this half-plane, we obtain another half-plane which overlaps it.

Therefore when we take the convex hull of their union, we obtain all of C2, as desired.

6. Absolute Convergence of Sums in a Right Half-Plane

We first analyze the individual expressions Zi( 1
2 , w;π, ψ1, ψ2) for i = 1, 2. Again, we will restrict our

attention to Z1 in what follows, as the convergence of Z2 will evidently follow in the same fashion. To begin,

we separate the sum over J in terms of two pieces – the first corresponding to nth power free J0, and the

second corresponding to Jn. From (2.13), we have

Z1

(
1
2
, w;π, ψ1, ψ2

)
=

∑
J0∈I(S)

nth-power free

ε(J0)ψ2(J0)LS( 1
2 , π, χJ0

ψ1)
(NJ0)w

∑
Jn∈I(S)

Q( 1
2 , J ;π, χJ0

ψ1)
(NJn)nw

.

In the expression for Q( 1
2 , J ;π, χJ0

ψ1) obtained from (2.11), we abbreviate the notation by defining

(6.1) CJ0,ψ1(Pv) = χJ0
(Pv)ψ1(Pv) + χJ0(Pv)ψ1(Pv),

and writing

Q
(

1
2
, Pnγv , χJ0

ψ1;π
)

= a(Pnγv )− a(Pnγ−1
v )q−

1
2

v CJ0,ψ1(Pv) + a(Pnγ−2
v )q−1

v .

For fixed J0, we show that the sum over Jn is absolutely convergent in a certain right half-plane in w. We

may write

∑
Jn∈I(S)

Q( 1
2 , J ;π, χJ0

ψ1)
(NJn)nw

=
n−1∏
k=1

∏
v

ordv(J)=nγ+k

∑
γ≥0

a(Pnγ+k−1
v )ψ1(P k−1

v )
(NPv)nγw

 ∏
v

ordv(J)=nγ

∑
γ≥0

Q( 1
2 , P

nγ
v , J ;π)

(NPv)nγw


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and then analyze each of the geometric sums individually, using the Satake parameters. First, we have∑
γ≥0

a(Pnγ+k−1
v )ψ1(P k−1

v )
(NPv)nγw

=
ψ1(P k−1

v )
αv − βv

∑
γ≥0

αnγ+kv − βnγ+kv

qnγwv

=
ψ1(P k−1

v )
αv − βv

[
αkv(1− αnv q

−nw
v )−1 − βkv (1− βnv q

−nw
v )−1

]
= ψ1(P k−1

v )(1− αnv q
−nw
v )−1(1− βnv q

−nw
v )−1

[
a(P k−1

v ) + a(Pn−k−1
v )q−nwv

]
.

Notice that we have two of the factors in the Euler factor corresponding to the non-archimedean places v in

the symmetric nth power L-function. Namely, for each such place v, we have the j = 0 and j = n factors in

the expression

(6.2) L(v)(nw, π, symn) =
∏

0≤j≤n

(1− αn−jv βjvq
−nw
v )−1.

Next, we have

∑
γ≥0

Q( 1
2 , P

nγ
v , χJ0

ψ1;π)
(NPv)nγw

= 1 +
∑
γ≥1

a(Pnγv )− a(Pnγ−1
v )q−

1
2

v CJ0,ψ1(Pv) + a(Pnγ−2
v )q−1

v

qnγwv

= 1 +
1

αv − βv

[(
αv − q

− 1
2

v CJ0,ψ1(Pv) + (αvqv)−1
) αnv
qnwv

(1− αnv q
−nw
v )−1

+
(
βv − q

− 1
2

v CJ0,ψ1(Pv) + (βvqv)−1
) βnv
qnwv

(1− βnv q
−nw
v )−1

]
.

After factoring out (1− αnv q
−nw
v )−1(1− βnv q

−nw
v )−1 from the entire expression and simplifying, we obtain

∑
γ≥0

Q( 1
2 , P

nγ
v , χJ0

ψ1;π)
(NPv)nγw

= (1− αnv q
−nw
v )−1(1− βnv q

−nw
v )−1

[
1 +

a(Pn−2
v )
qnwv

− a(Pn−1
v )CJ0,ψ1(Pv)

q
nw+1/2
v

+
a(Pn−2

v )
qnw+1
v

+
1

q2nw+1
v

]
.

Therefore the sum over Jn ∈ I(S) becomes

(6.3)
∑

Jn∈I(S)

Q( 1
2 , J ;π, χJ0

ψ1)
(NJn)nw

=

∏
v

(1− αnv q
−nw
v )−1(1− βnv q

−nw
v )−1

n−1∏
k=1

∏
v

ordv(J)≡k (n)

ψ1(P k−1
v )

[
a(P k−1

v ) + a(Pn−k−1
v )q−nwv

]

×
∏
v

ordv(J)≡0 (n)

[
1 +

a(Pn−2
v )
qnwv

− a(Pn−1
v )CJ0,ψ1(Pv)

q
nw+1/2
v

+
a(Pn−2

v )
qnw+1
v

+
1

q2nw+1
v

]
.
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In order to express this sum in terms of L(nw, π, symn), we multiply through by the remaining factors in

(6.2) and their reciprocals. If we put

Rv(n,w;π) =
∏

1≤j≤n−1

(1− αn−jv βjvq
−nw
v )

=

{
(1− αn−2

v q−nwv ) · · · (1− αvq
−nw
v )(1− βvq

−nw
v ) · · · (1− βn−2

v q−nwv ) if n is odd,
(1− αn−2

v q−nwv ) · · · (1− αvq
−nw
v )(1− q−nwv )(1− βvq

−nw
v ) · · · (1− βn−2

v q−nwv ) if n is even,

then we have ∑
Jn∈I(S)

Q( 1
2 , J ;π, χJ0

ψ1)
(NJn)nw

= LS(nw, π, symn)RJ0(w;π),

where

RJ0(w;π) =
n−1∏
k=1

∏
v

ordv(J0)=k

Rv(n,w;π)ψ1(P k−1
v )

[
a(P k−1

v ) + a(Pn−k−1
v )q−nwv

]

×
∏
v

ordv(J0)=0

Rv(n,w;π)

[
1 +

a(Pn−2
v )
qnwv

− a(Pn−1
v )CJ0,ψ1(Pv)

q
nw+1/2
v

+
a(Pn−2

v )
qnw+1
v

+
1

q2nw+1
v

]
.

The factor L(nw, π, symn) converges absolutely for Re(w) > 1
n + 1

9 . In the factor RJ0(w;π), the product

over places v with Pv | J0 is a finite product, and therefore it does not affect convergence. In the infinite

product over places v with Pv - J0, for a given place v, it is clear that the terms

a(Pn−2
v )
qnwv

and
a(Pn−1

v )CJ0,ψ1(Pv)

q
nw+1/2
v

determine the region of convergence. Using the fact that

a(Pv) �ε q
1/9+ε
v ,

([12]) we see that the first of these two terms is in fact more restrictive. We find that this infinite product,

and hence RJ0(w;π), converges absolutely for Re(w) > 7
9n + 1

9 . Now suppose there are only finitely many

twists for which LS( 1
2 , π, χJ0

ψ1) is nonzero. Then

LS(nw, π, symn)
∑

J0∈I(S)

nth-power free

ε(J0)ψ2(J0)LS( 1
2 , π, χJ0

ψ1)
(NJ0)w

RJ0(w;π),

will converge absolutely for Re(w) > 1
n+ 1

9 . (Note that since we are restricting our attention to the case n ≥ 3,

this would mean that there exists some δ > 0 such that the sum converges absolutely for Re(w) > 1
2 − δ.)
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7. Nonvanishing twists (Proof of Theorem 1.1)

We now use the results of the previous sections to prove Theorem 1.1. We require the following lemma.

Lemma 7.1. Suppose the Dirichlet series

L(w) =
∑ b(d)

dw

is absolutely convergent for Re(w) > 1/2−δ, for some positive δ. Suppose further that there exist Dirichlet se-

ries M1(w),M2(w), . . . ,Mr(w) and functions γ1(w), γ2(w), . . . , γr(w) which satisfy the following conditions:

(1) Each Mj(w) is absolutely convergent for Re(w) > 1/2− δ.

(2) Each γj(w) is holomorphic for Re(w) > 0, and for all k > 0, σ > 1/2 we have the estimate

γj(σ + it) <<k,σ |t|−k, as |t| → ∞.

(3) There is the functional equation

L(w) =
∑
j

γj(w)Mj(1− w).

Then L(w) is identically zero.

To apply the Lemma, we set s = 1
2 and view the functions Zi(s, w;π, ψ1, ψ2) for i = 1, 2 as Dirichlet

series in w. In particular, after repeated applications of the functional equations, the Dirichlet series L(w) =

Z1( 1
2 , w;π, 1, 1) satisfies the functional equation

L(w) =
∑

ξ1,ξ2∈ bRc

γξ1,ξ2(w)Z2(1/2, 1− w;π, ξ1, ξ2)

for some collection of functions γξ1,ξ2 satisfying condition 2 of Lemma 7.1. (To see this, apply the w-functional

equation, followed by the s-functional equation, followed by the w-functional equation to Z1(s, w;π, 1, 1) at

s = 1
2 .) If there are only finitely many idèle class characters χJ0 of order n such that L(1/2, π ⊗ χJ0) is

nonzero, then as established in the previous section, there exists a positive δ such that the Dirichlet series

on both sides of the above equation are absolutely convergent for Re(w) > 1/2− δ. It follows that L(w) is

identically zero and the proof of Theorem 1 is complete.
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Proof of Lemma 7.1: Suppose L(w) is not identically zero. Choose δ′ with 0 < δ′ < δ such that L(1/2+δ′) =

A 6= 0. Then

L(1/2 + δ′ + it) �
∑
j

|γj(1/2 + δ′ + it)| · |Mj(1/2− δ′)| −→ 0 as |t| → ∞.

Choose X so large that

∣∣∣∣∣L(1/2 + δ′)−
∑
d<X

b(d)
d1/2+δ′

∣∣∣∣∣ < A/3. Choose t0 so that
∣∣d−it0 − 1

∣∣ < 1/3 for all

d < X. Then

|L(1/2 + δ′ + it0)− L(1/2 + δ′)| ≤

∣∣∣∣∣∑
d<X

b(d)
d1/2+δ′

(
1− 1

dit0

)∣∣∣∣∣+
∣∣∣∣∣∣
∑
d≥X

b(d)
d1/2+δ′

∣∣∣∣∣∣ < 2A/3.

Hence |L(1/2 + δ′ + it0)| > A/3. However, we can find arbitrarily large such t0. This contradicts the fact

that L(1/2 + δ′ + it) → 0 as t→∞.
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